
Exploring Pseudo-Testedness:
Empirically Evaluating Extreme Mutation Testing at

the Statement Level
Megan Maton

University of Sheffield
Gregory M. Kapfhammer

Allegheny College
Phil McMinn

University of Sheffield

Abstract—Extreme mutation testing (XMT) detects undesir-
able pseudo-testedness in a program by deleting the method
bodies of covered code and observing whether the test suite
can detect their absence. Even though XMT may identify test
limitations, its coarse granularity means that it may overlook
testing inadequacies, particularly at the statement level, that
developers may want to address before committing the resources
demanded by traditional mutation testing. This paper proposes
the use of the statement deletion mutation operator (SDL)
to uncover pseudo-tested statements in addition to complete
methods. In an experimental evaluation involving four frequently-
studied, large, Apache Commons Java projects and 23 projects
randomly selected from the Maven Central Repository, we
found 722 different cases of pseudo-tested statements. Critically,
we discovered that 48% of these statements exist outside of
pseudo-tested methods, meaning that the detection of testing
deficiencies related to these statements would normally be left to
traditional, resource-intensive, mutation testing. Also, we found
that a popular Java mutation testing tool would not have mutated
some of the statement types involved in the first place, effectively
rendering these issues, hitherto, hard to discover. This paper
therefore demonstrates that XMT alone is insufficient and should
be combined with pseudo-tested statement evaluation to pinpoint
subtle, yet important, testing oversights that a developer should
tackle before applying traditional mutation testing.

I. INTRODUCTION

Extreme mutation testing (XMT) is an approach to detecting
deficiencies in a test suite that individually deletes method
bodies in covered program code and observes whether the test
suite detects their absence [1]. If each method body deletion
is successfully detected — i.e., at least one test now fails —
the method is said to be “required” for the test suite to pass
[2]. However, if a deletion goes unnoticed — i.e., all the tests
still pass — the method is instead said to be “pseudo-tested”.
That is, a pseudo-tested method is a method that is executed
by a test suite and did not raise an unexpected exception,
but its result was not checked by a test’s assertions, either
directly or indirectly. Since pseudo-tested methods indicate
apparent deficiencies in a program’s test suite, developers
can use knowledge about them to strengthen the program’s
tests, removing weaknesses related to pseudo-testedness, and
ensuring that each method is more effectively tested [1].

Pseudo-tested methods have been shown to achieve lower
mutation scores than required methods, further showing how
they can be “blind spots” for a test suite [2]. Tools such as
Descartes [3] and Reneri [4] can find pseudo-tested methods
For the purpose of open access, the author has applied a Creative Commons Attribution
(CC BY) license to any Author Accepted Manuscript version arising.

without the need to do full mutation testing, while also
suggesting improvements to developers. The quick feedback
that XMT provides thereby enables developers to address
issues as their program code evolves. However, XMT’s use
of a coarse-grained transformation, like method body deletion,
may overlook subtler instances of pseudo-testedness. Methods
classified as required may not themselves be thoroughly tested,
meaning that the test suite still misses some issues that
traditional mutation testing may detect. That is, a technique is
needed to help developers quickly find smaller units of pseudo-
testedness, in addition to that provided for complete methods,
without having to resort to a full and costly mutation analysis.

This paper demonstrates that the statement deletion (SDL)
mutation operator [5] is an operator that could be used to
identify pseudo-testedness in individual program statements
and statement blocks. The SDL operator is a versatile mutation
operator, capable of mutating most of the code that can appear
in a program [6]. Furthermore, Deng et al. [7] found that a test
suite that achieves a 100% mutation score using only the SDL
operator achieves an average of a 92% mutation score with a
full set of operators, but with 81% fewer mutants. Meanwhile,
developers at Google use statement block removal to highlight
potentially redundant code, also finding that SDL is one of the
most productive mutants they use [8], [9]. However, SDL is
often left out or only partially implemented in existing widely-
used Java mutation tools such as PIT [10] and Major [11],
while research has yet to evaluate SDL’s usefulness beyond
assessing its role as a mutant reduction technique [7], [12].

This paper is the first to use SDL to identify statements
that are pseudo-tested by a test suite, finding 722 examples
of pseudo-tested statements in both four frequently-studied,
large, Apache Commons Java projects as well as 23 projects
randomly selected from the Maven Central Repository [13],
the largest official software repository for Java. Critically, we
found that XMT misses 48% of the pseudo-tested statements
as they appear in methods it classifies as required, an oversight
that may lead developers to an incorrect assumption that
all pseudo-testedness has been addressed — and leaving the
detection of testing deficiencies related to these statements
to traditional, resource-intensive, mutation testing [14]. We
further found that pseudo-tested statements achieved lower
mutation scores than required statements and that traditional
mutation testing does not typically mutate some Java state-
ment types, such as continue, break and throw statements,
leaving gaps in test suite evaluation [15], [16]. Finally, we

PSEUDOSWEEP Classifications
Required Statements Pseudo-tested Statements

1 /**
2 * Decode bytes encoded with Percent-Encoding based
3 * on RFC 3986. The reverse process is performed in
4 * order to decode the encoded characters to Unicode.
5 */
6 @Override
7 public byte[] decode(final byte[] bytes)
8 throws DecoderException {
9 if (bytes == null) {

10 return null;
11 }
12 /* ... */
13 try {
14 /* ... */
15 buffer.put((byte) ((u << 4) + l));
16 } catch (final ArrayIndexOutOfBoundsException e) {
17 throw new DecoderException(/* ... */);
18 }
19 /* ... */
20 return buffer.array();
21 }
22

23

24 ✓@Test
25 void testPercentEncoderDecoderWithNullOrEmptyInput()
26 throws Exception {
27 /* ... */
28 assertNull(percentCodec.decode(null),/* ... */);
29 /* ... */
30 }
31

32 ✓@Test
33 void testDecodeInvalidEncodedResultDecoding()
34 throws Exception {
35 /*...*/
36 try {
37 percentCodec.decode(/* Invalid Encoded Result */);
38 } catch (final Exception e) {
39 assertTrue(
40 DecoderException.class.isInstance(e) &&
41 ArrayIndexOutOfBoundsException.class
42 .isInstance(e.getCause()));
43 }
44 }

Listing 1. An example of a “required” method containing a “pseudo-tested”
statement from the org.apache.commons.codec.net.PercentCodec decode
method, and two tests, including testDecodeInvalidEncodedResultDecoding,
from the test suite called org.apache.commons.codec.net.PercentCodecTest.

manually analysed a sample of 119 pseudo-tested statements
to understand their causes, revealing that most pseudo-tested
statements are due to discrete test suite inadequacies (e.g.,
missing tests or partial assertions) that XMT and traditional
mutation testing cannot highlight due to their inapplicable
operators. The contributions of this paper, then, are as follows:

1) A quantitative evaluation of the frequency of pseudo-
testedness at the statement level, specifically those left
undetected by XMT (Section V-B).

2) A quantification of the differences between pseudo-tested
statements and other covered statements using traditional
mutation scores (Sections V-C and V-D).

3) A qualitative manual analysis of the causes of pseudo-
tested statements to understand the test suite inadequacies
that they uncover (Section V-E).

II. MUTATION TESTING

Mutation testing inserts syntactic changes into the program
under test to evaluate a test suite’s capability to find real faults
if they were present [17], [18]. Although helpful in improving

test suite effectiveness, mutation testing presents a significant
overhead [19] since the runtime for executing a complete set
of mutants can be substantial as every mutant can require a
complete run of the test suite. However, not all statements are
valuable to test and, therefore, addressing surviving mutants
(including pseudo-tested code) can be a waste of resources.

A. The Statement Deletion Operator (SDL)

Deletion mutation operators remove code structures from
the program under test [20]. The statement deletion operator
(SDL) removes entire statement blocks. The SDL operator
removes a statement from the program under test and executes
the test suite to see if it causes a failure [7]. The statement
deletion mutant is “killed” if the test suite detects the dele-
tion (i.e., a test fails) and it “survives“ if it does not. For
example, in Listing 1, the SDL operator would remove the if
statement on Lines 9–11. When it removes this statement, the
bytes variable can remain null beyond this point, causing a
NullPointerException; therefore, testPercentEncoderDecoder-
WithNullOrEmptyInput fails and kills the mutant. However,
suppose the SDL operator removes the throw statement on
Line 17. The test suite will not fail in that case, as the testDe-
codeInvalidEncodedResultDecoding only checks the exception
type if the decode method throws an uncaught exception.

Prior empirical studies have shown that SDL independently
produces significantly fewer mutants than traditional mutation
testing without losing significant effectiveness [6], [7]. Dela-
maro et al. found that SDL is combinable with other deletion
operators, such as operator and variable deletion, to enhance
SDL’s detection of testing concerns [20]. The SDL operator
is limited in its implementation across different Java mutation
testing tools, as we now discuss in further detail for three tools.

muJava: Deng et al. implemented their definition of the
SDL operator into the muJava mutation tool [7], [21]. This im-
plementation includes deletions for entire statement structures
from single-line statements up to entire for statements. It also
includes a basic set of default values for return statements.
This involves returning the value “0” for int, char, double,
float, long and short, as well as both “true” and “false” for
boolean types. For the String type, muJava returns null.

Major: Just et al. identified statement deletion as akin to a
genuine fault, yet requiring a stronger mutation operator [16].
For their implementation of the statement deletion operator in
Major, they found that deletion of control flow statements can
lead to uninitialised variables or unreachable code errors.

PIT: PIT is a state-of-the-art mutation testing tool that
inserts and executes mutants in Java programs by using Java
bytecode manipulation [10]. This means that its operations
do not directly map to the program’s source code, making it
impossible to depict entire source code statements accurately.

B. Extreme Mutation Testing

Extreme mutation testing (XMT) reduces the number of
mutants executed by only removing method bodies from the
program under test [1]. Where a return value is necessary for
the program to compile, XMT adds default return values using

preset values for different types. After each deletion, XMT
runs the tests to determine whether the deletion causes a fail-
ure. These definitions classify elements evaluated under XMT:

Definition 1. Not-covered (N) An element in the program
under test that is not executed by the test suite.

Definition 2. Required (R) A program element that is
executed by the passing test suite and that cannot be removed
without impacting the test outcomes.

Definition 3. Pseudo-tested (P) A program element that is
executed by the test suite and that can be removed without
impacting test outcomes.

Definition 4. Partially-tested (A) A program element exe-
cuted by the test suite that can be fixed to only a subset of
possible values without impacting test outcomes.

If the decode method body in Listing 1 was replaced by
a single default return, at least one of the tests that cover it
would fail and thus it is “required” for the tests to pass.

To illustrate the distinction between the last two definitions,
consider an integer variable, which may be mutated to “0” and
“1”. Killing only one mutant leaves the method (or statement)
“partially-tested” [22], whereas if both mutants survive, the
variable would be “pseudo-tested”. For this paper’s evaluation,
pseudo-tested elements can include those that are partially-
tested as both are potential action areas for a developer.

Extreme mutation testing reduces the overhead of mutation
testing by applying only a few operators (depending on the
method return type) to each method. Previous studies used
traditional mutation testing [18] to confirm that pseudo-tested
methods are poorly tested compared to other covered meth-
ods [2], [22]. These studies calculated the method-level mu-
tation scores for required and pseudo-tested methods, finding
that the pseudo-tested ones had lower scores than those that
were required by the tests. There are two existing tools that
target XMT for Java, as we now discuss in further detail.

Descartes: The Descartes mutation engine for the PIT
mutation tool implements XMT for use within PIT [2]. At the
Java bytecode level, it is easy for a tool to remove a method
and for a developer to translate that back to the method body
that the tool deleted. Therefore, it is appropriate to implement
XMT through the manipulation of Java program’s bytecode.

Reneri: The Reneri tool observes pseudo-tested method
executions both with and without a method body’s removal,
enabling it to suggest potential solutions for pseudo-testedness,
such as adding tests and verifying the values of variables [4].

III. APPROACH

Our automated approach finds relevant pseudo-tested state-
ments by extending the SDL operator to include further trans-
formations and implementing an auxiliary approach to identify
pseudo-tested methods. Since identifying pseudo-tested state-
ments within pseudo-tested methods does not present any new
information to a developer, it is more helpful to explore the
pseudo-tested statements external to pseudo-tested methods,
that is, pseudo-tested statements that XMT would not reveal.

For example, for the decode method in Listing 1, identifying
pseudo-tested methods alone would declare this method as
“required” for the test suite to pass. However, a tool can
remove the throw on Line 17 without causing any test cases to
fail. We show the testDecodeInvalidEncodedResultDecoding
test case as it targets this line. However, despite covering
this statement and using an assertion to check the exception
type, the structure of the test means that if it does not trigger
the program code to throw an exception in the first place,
the test does not reach the catch statement containing the
assertion, meaning the test does not fail. With this information,
a developer could add the following JUnit fail assertion:

1 fail("Expected exception was not thrown");

to the test between lines 37 and 38 to fail when the test has
reached this point without catching an exception, ensuring that
future maintenance does not accidentally introduce this fault
of omission. We implemented this approach in a tool, called
PSEUDOSWEEP, as explained in this section’s remainder.
(We direct the interested reader to reference [23] for further
information about the PSEUDOSWEEP tool.)

A. Method Classification

If PSEUDOSWEEP removes a covered method without the
test suite failing, the method is pseudo-tested. Where a method
requires a return statement for compilation, PSEUDOSWEEP
uses a pre-defined set of default values as used in the current
implementation of Descartes [2]. For example, where a method
returns an integer value, PSEUDOSWEEP replaces the method
body with return 1 and then tries again with return 0. By
checking two return values for each method, PSEUDOSWEEP
avoids returning only the value that the tests expect. We
include a complete description of the operators in the repli-
cation package [24]. By first classifying each method as not
covered, required, or pseudo-tested (where the pseudo-tested
subset includes partially-tested methods), we can identify the
immediate issues of pseudo-testedness, like other XMT tools.

B. Statement Classification

Next, PSEUDOSWEEP locates the pseudo-tested statements
and uses the method classifications to identify pseudo-tested
statements within the required methods. Note that not-covered
methods cannot contain pseudo-tested statements, as the test
suite must cover a pseudo-tested statement by definition.

Basing the core deletions on the statement deletion (SDL)
operator [7] would mean that PSEUDOSWEEP could only
evaluate statements that it can delete in their entirety without
causing compilation issues. Therefore, we extended SDL to
enable PSEUDOSWEEP to delete variable declarations, lambda
statements, and labelled loops, as explained in Section III-C.

We also found that SDL and XMT would conflict when
classifying some single-statement methods. Given the follow-
ing method, SDL classifies the return statement on Line 2 as
“required” because it applies only a single killable mutant.

1 public int subtract(int a, int b) {
2 return a - b;
3 }

Yet, XMT would apply two mutants, where only one is
killable, and classify the method as pseudo-tested. Therefore,
we have implemented SDL with the same default operators
(i.e., combine SDL with a Return Value Mutation operator),
like XMT in Descartes Engine, to improve its effectiveness [3].

C. Metamutant

PSEUDOSWEEP implements statement deletion and method
deletion by instrumenting source code to create a metamu-
tant [25]. This metamutant ensures that all statement and
method deletions are always compilable. To create the meta-
mutant, PSEUDOSWEEP inserts if statements around each
statement/method in the source code, enabling it to condition-
ally execute each element [26]. The condition of the inserted if
statements calls PSEUDOSWEEP to check if it should run the
contained element. The following Java code gives a simplified
example of how the tool instruments most program statements.

1 if (PseudoSweep.exec(ID)){
2 i++;
3 }

The full instrumentation includes element type and class
information. Where change in scope will cause compilation
issues, the tool uses default values to enable deletion.

1 String s = "";
2 if(PseudoSweep.exec(ID)){
3 s = "actual";
4 }

In the example above of a variable declaration metamutant,
PSEUDOSWEEP enables compilation by assigning a default
value and conditionally assigning the original initialisation.

D. Evaluating Deletions

We can use the previously described metamutant to instru-
ment each element. PSEUDOSWEEP runs each deletion with
a timeout relative to the original test case runtime to halt any
infinite loops introduced by the metamutant. The tool then runs
every test three times to identify the covered elements before
sequentially “removing” each element and executing the test.
If the test passes, the tool runs it twice again to check for
flakiness [27]. We skip flaky tests as they may impact pseudo-
testedness detection. The results are then internally analysed
to identify the elements whose removal does not cause test
failures and presented to the user as pseudo-tested elements.

IV. EVALUATION

Since prior work suggests that pseudo-tested methods exist
in all projects [1], [2], [22], we first investigate how common
pseudo-tested statements are within our project set and their
relationship with the “required” methods (RQ1). Next, we de-
termine whether mutation scores for pseudo-tested statements
are lower than for required statements (RQ2), as occurs at
the method level [2], [22]. Using mutation scores calculated
by PIT, we explore whether traditional mutation testing effec-
tively targets pseudo-tested statements (RQ3). Finally, since
prior work showed that XMT overlooked concerning issues in
required methods [22], we use statement deletion to identify
the issues not surfaced by XMT and compare them to the

findings of traditional mutation testing, thereby highlighting
the gaps between the different techniques (RQ4). Ultimately,
this paper answers the following four research questions:
RQ1: How frequent are pseudo-tested elements?
RQ2: Do pseudo-tested elements have low mutation scores?
RQ3: Does PIT’s default set of operators effectively highlight
deficient testing with respect to pseudo-tested statements?
RQ4: What are the causes of pseudo-tested statements?

A. Projects

This paper investigates pseudo-testedness in diverse, real-
world Java projects. Table I shows that we used four large
open-source Apache Commons projects and 23 open-source
projects randomly chosen from the Maven Central Reposi-
tory [13]. When randomly selecting the Maven projects, we
adopted the following criteria: uses JDK versions 8–11 (due to
tooling restrictions from using JavaParser [28]); single mod-
ule (currently PSEUDOSWEEP only analyses single-module
projects); explicit type declarations; uses JUnit 4 or 5; one or
more tests that compile and pass before using PSEUDOSWEEP.

To ensure that we studied a diverse set of real-world projects
of different sizes and test suite maturities, we followed the
project sampling method used by Gruber et al. to identify
over 38,000 Maven projects [29]. As the prohibitive time costs
of running PIT prevented the use of all these projects, we
randomly sampled 180 of them from this list, collecting their
source code from GitHub and keeping those that adhered to
our inclusion criteria, thereby resulting in a set of 23 projects.
We also included four commonly used Apache Commons
projects to connect our results about pseudo-tested statements
to prior studies on pseudo-tested methods [1], [2].

B. Tooling

Since it is the state-of-the-art mutation testing tool for Java,
we used PIT version 1.15.6 with JUnit5 plugin version 1.2.1
and the Gregor mutation engine to calculate the traditional
mutation scores [10]. We used PSEUDOSWEEP, as described
in Section III, to analyse pseudo-tested statements and methods
in the chosen projects. We used PSEUDOSWEEP’s implementa-
tion of both the SDL mutation operator and XMT because the
existing tools (e.g., muJava, Major, and PIT with the Descartes
engine) were unsuitable for the following reasons.

For SDL, we could not use muJava [7], [21], [30], [31]
because it only supports up to Java 1.6 and was thus not
applicable to recent Java projects. Moreover, Major’s imple-
mentation of SDL only incorporates a subset of the statement
deletion operator transformations [11]. Major’s source code is
unavailable and therefore we could not extend the operator
set. Statement deletion is also less useful when implemented
at the bytecode level, since the bytecode does not translate
directly into Java statements; this means that extending PIT’s
Gregor Engine to include SDL may not always produce
suitable statement deletion mutants. Finally, the most recent
version 1.3.2 of the Descartes engine [3] for performing XMT
with PIT restricts it to an old 1.7.0 version, thereby limiting
compatibility to an out-of-date JUnit5 plugin version 0.16.

TABLE I
Details for each evaluation project, including its GitHub owner and repository name and the numbers of methods (# METHOD), statements (# STMT), tests
(# TEST), assertions (# ASSERT), and PIT mutants (# MUTANT), and JaCoCo’s Bytecode Instruction Coverage (% BCOV) and Line Coverage (% LCOV)
and PSEUDOSWEEP’s Statement Coverage (% SCOV). The names of the Apache Commons projects are bold while those of the Maven projects are not. The
portion of a project name that is not in italics is not used in the remainder of the paper for brevity. The “–” symbol indicates that it is a non-meaningful total.

Owner / project # METHOD # STMT # TEST # ASSERT # MUTANT % BCOV % LCOV % SCOV

LindenY / asw4j 170 816 42 215 504 48 49 49
authlete / authlete-jose 60 570 15 15 324 49 55 53
IvoNet / beanunit 44 275 44 56 183 80 75 68
sigpwned / chardet4j 80 682 13 13 732 91 68 62
abedra / chronometrophobia 65 85 3 5 238 41 55 52
apache / commons-cli 140 745 448 688 753 96 96 97
apache / commons-codec 625 3933 923 2536 4060 97 95 90
apache / commons-csv 145 960 468 1445 718 98 99 99
apache / commons-math 6467 46206 6136 12402 45646 92 90 87
coodoo / coodoo-listing 81 739 64 84 477 13 16 13
kestreldigital / data-conjuror 12 29 2 3 26 54 59 59
fuinorg / ext4logback 7 45 4 16 26 51 59 44
vebqa / f3270 204 1299 7 6 864 4 4 0.8
mervinkid / jargser 10 96 1 6 86 88 84 86
erdtman / java-json-canonicalization 65 1102 5 1 993 49 40 33
clerezza / jena.serializer 2 32 5 7 17 88 89 88
rbkmoney / kafka-common-lib 27 117 6 10 73 29 32 42
Naoghuman / lib-logger 36 95 3 0 43 25 23 19
harium / marine 14 45 2 2 31 6 7 4
awslabs / payload-off-loading-java-common-lib-for-aws 37 188 40 92 100 71 71 68
premiumminds / pmpersistenceutils 27 228 19 24 106 66 71 68
sergiodeveloper / sequencepattern 114 493 16 16 397 41 48 41
andreidore / smartbill-java-client 16 200 11 9 58 19 21 23
tblsoft / solr-cmd-utils 807 7280 179 449 3204 24 24 23
bordertech / wcomponents-sass-compiler 7 62 1 2 28 70 74 74
wildflyswarm / wildfly-swarm-spi 64 268 12 156 180 47 46 40
vincentzurczak / xml-region-analyzer 10 222 9 273 196 96 97 97

Total for Apache Commons Projects 7377 51844 7975 17071 51177 – – –
Total for Randomly Selected Projects 1959 14968 503 1460 8886 – – –

Total for All Projects 9336 66812 8478 18531 60063 – – –

C. Methodology

We took the following steps to setup each of the chosen
projects. Since every project used Maven it was configured
with a “Project Object Model” (POM) file. For each project,
we duplicated the POM file and added PSEUDOSWEEP as
a dependency to one and PIT with the Gregor Engine as a
plugin to the other, thereby ensuring their configurations did
not interfere with each other. We used a script to execute both
tools and direct each one’s output data to a separate directory.
As shown in Table I, we also collected the JaCoCo coverage
scores to characterise a project’s level of testedness. Finally,
we implemented and ran scripts that characterise the projects
according to the mutants arising from the use of XMT, SDL,
and PIT. This enabled us to report metrics such as pseudo-
tested statements within required methods and which types of
statements contained the most PIT mutants. We used the data
produced by these scripts to answer RQ1 through RQ3.

We adopted two approaches to studying pseudo-tested state-
ments. First, we calculated the total number of pseudo-tested
statements (P). We also investigated the subset of P that
occurs in required methods (PiR). Any pseudo-tested methods
identified by extreme mutation testing would already highlight
that pseudo-testedness is present, meaning that identifying
pseudo-tested statements in pseudo-tested methods does not
surface new information to a developer and is thus not a focus

of this paper. However, since extreme mutation testing does not
reveal pseudo-tested statements within the required methods
(PiR), this paper studies their frequency in the project set.

To answer RQ4, we manually analysed a sample of pseudo-
tested statements found in the required methods. We investi-
gated these elements because extreme mutation testing would
not highlight their potential issues. The first author manually
analysed a sample of 119 pseudo-tested statements across
30 required methods to identify their causes. We produced
the sample by ordering the required methods according to
the number of pseudo-tested statements and then selecting
methods of varying counts of pseudo-tested statements (greater
than 0) from different projects until we had a sample size of at
least 100 pseudo-tested statements within required methods.

First, we manually identified and removed 12 “uninterest-
ing” program statements that PSEUDOSWEEP mutated and
ultimately labelled as pseudo-tested. Also called “arid nodes”,
these statements represent parts of a program’s abstract syn-
tax tree (AST) that perform tasks like logging and thus do
not implement features that should be subjected to mutation
testing [8]. Since the current implementation of our tool does
not filter out these statements, they were a subset of the
pseudo-tested statements in the required methods. In future
work we will enhance PSEUDOSWEEP so that it automatically
removes them from consideration. Finally, we removed four

equivalent mutants that PSEUDOSWEEP introduced when an
inserted default value was equivalent to the expected value. We
manually removed each statement one at a time to confirm that
it was pseudo-tested before looking at the tests that covered the
method to discern why the statement was removable without
impacting the test suite outcomes. While manually reproducing
pseudo-testedness, we identified and removed 11 statements
in total from the sample that PSEUDOSWEEP had classified
as pseudo-tested due to unhandled JUnit annotations and
threading. To answer RQ4, we then identified the causes of the
remaining 92 (119−12−4−11) pseudo-tested statements, ulti-
mately grouping them into meaningfully labelled categories.

D. Threats to Validity

External Validity: We studied 27 open-source projects,
selecting four open-source Apache projects (i.e., commons-
cli, commons-codec, commons-csv, and commons-math) due
to their widespread use in the testing literature and their
comprehensive test suites [2], [3], [32], [33]. We randomly
selected the remaining 23 projects from the Maven Central
Repository according to our project criteria and then forked
their source code from the most recent GitHub commit. We
used these projects so that we could study pseudo-testedness
in projects of various sizes and test suite maturities. Since our
findings may not generalise to other projects, further studies
should extend this paper’s experiments to a larger project set.

Internal Validity: The PSEUDOSWEEP tool and the data
analysis scripts are not exempt from defects. We extensively
tested the tools, but instrumentation limitations may cause
them to fail for code patterns we have yet to encounter. We
further ran all of a project’s tests three times and recorded
execution times to check for flakiness [27]. If a test is flaky,
we cannot rely on it to identify pseudo-tested elements [34],
so we skip this test. We also ran each test three times against
a mutant, mitigating any flakiness sources. We leave an inves-
tigation of the impact of flakiness on pseudo-testedness detec-
tion for future work. We also checked the results, addressed
unexpected values, and created a replication package [24].

We based our categorisation of statement types on Java-
Parser’s and combined sub-categorisations as part of the instru-
mentation process [28]. Adding our sub-categorisations was
necessary to enable PSEUDOSWEEP to instrument source code
in a compilable way. For example, in JavaParser, variable dec-
laration statements are categorised as expression statements.
Yet, if we were to delete the statement as we do with other
expression statements, the instrumentation would introduce
compilation errors. Since statements will likely be categorised
differently by other tools, future work will investigate how dif-
ferent statement categorisations influence the results. Threaded
code originating within tests themselves can interfere with
our tool’s internal thread control, used for timing out tests if
deletions cause infinite loops. We were forced to omit certain
tests (see replication package), which may have introduced
some small inaccuracies into our results. Finally, the results
for RQ1 through RQ3 include arid nodes [8]; future work on
PSEUDOSWEEP will remove them from consideration.

We used PIT, with its commonly adopted “default” mutant
set, to generate and evaluate the traditional mutants. However,
using a different mutation testing tool or a different version or
configuration of PIT may yield different results. Finally, the
first author performed the manual analysis following a well-
documented process to confirm PSEUDOSWEEP’s findings and
cross-check the results to understand the causes of pseudo-
tested statements. Since this manual procedure could have in-
troduced errors, future work will validate these interpretations
by discussing them with the developers of each project.

V. RESULTS

A. Project Characterisation

This paper’s study differs from prior work as the project
set has varying degrees of coverage. We used PSEUDOSWEEP
to calculate test coverage and used JaCoCo’s [35] line and
bytecode coverage scores to confirm them. Table I shows that
the statement coverage reported by PSEUDOSWEEP ranges
from 0.8% to 99%, which is similarly reflected in the JaCoCo
line coverage (4% to 99%) and bytecode coverage (4% to
98%). For the Apache Commons projects used in prior studies,
coverage was uniformly high; however, the randomly selected
projects exhibited a wide range of coverage scores with f3270
obtaining the lowest coverage scores at 0.8% for both byte-
code instruction and line coverage, and xml-region-analyzer
obtaining the highest coverage of 97% and 97%, respectively.

The sizes of projects evaluated in this study also ranged
from 29 statements up to 46206 statements and from 7 meth-
ods to 6467 methods. Using a varied set of projects enables
us to explore pseudo-testedness from different perspectives.

B. RQ1: How frequent are pseudo-tested elements?

Table II shows the distribution of “not-covered” (N), “re-
quired” (R) and “pseudo-tested” (P) methods and statements
for each project. While determining the frequency of pseudo-
tested methods enables us to calibrate this paper’s results
with prior work, calculating the frequency of pseudo-tested
statements characterises a phenomenon not heretofore studied.
For both methods and statements, the table further reports
the total number of elements across a project (N+R+P). For
statements, we also identified the subset of pseudo-tested
statements that our tool found within the required methods
(PiR), thereby highlighting a crucial limitation of XMT.

In the following analysis of Table II’s data, we first highlight
the overall trends and then respectively examine the frequency
data for the Apache Commons and randomly selected projects.

1) Frequency of pseudo-tested methods: Results from prior
empirical studies suggest that pseudo-tested methods exist
within all projects [1], [2], [22]. However, Table II reveals that
this trend does not hold for our chosen projects since seven
of the randomly selected ones contained no pseudo-tested
methods. With that said, all Apache Commons projects used
in prior work contained at least one pseudo-tested method.
This result can be explained by the fact that, as mentioned
in Section V-A, the chosen project set differs from previous
studies, with more varied project types and levels of testedness.

TABLE II
The numbers of not-covered (N), required (R), pseudo-tested (P), and the total number of elements for methods and statements (N+R+P), and pseudo-tested
statements in required methods (PiR) for statements, which is a subset of P. Each horizontal bar shows the proportion of a project’s elements in N, R, and P.

Methods Statements

Project # N # R # P (N+R+P) # N # R # P # PiR (N+R+P)

asw4j 87 59 24 170 414 385 17 12 816
authlete-jose 20 31 9 60 273 297 0 0 570
beanunit 3 26 15 44 87 138 50 31 275
chardet4j 22 30 28 80 256 426 0 0 682
chronometrophobia 41 24 0 65 41 44 0 0 85
commons-cli 4 132 4 140 20 705 20 5 745
commons-codec 70 523 32 625 385 3285 263 125 3933
commons-csv 0 144 1 145 12 944 4 2 960
commons-math 834 5243 390 6467 5841 40105 260 119 46206
coodoo-listing 72 9 0 81 640 97 2 2 739
data-conjuror 6 1 5 12 12 14 3 0 29
ext4logback 4 3 0 7 25 20 0 0 45
f3270 202 1 1 204 1289 1 9 0 1299
jargser 2 5 3 10 13 83 0 0 96
json-canonicalization 22 32 11 65 735 367 0 0 1102
jena.serializer 0 2 0 2 4 28 0 0 32
kafka-common-lib 19 6 2 27 68 46 3 2 117
lib-logger 31 2 3 36 77 1 17 4 95
marine 12 0 2 14 43 0 2 0 45
payload-off-loading 9 24 4 37 60 101 27 10 188
pmpersistence 10 17 0 27 72 154 2 2 228
sequencepattern 80 29 5 114 293 200 0 0 493
smartbill-client 14 2 0 16 155 32 13 12 200
solr-cmd-utils 569 202 36 807 5636 1615 29 24 7280
wcomponents-compiler 0 7 0 7 16 46 0 0 62
wildfly-swarm-spi 40 22 2 64 161 106 1 0 268
xml-region-analyzer 0 9 1 10 6 216 0 0 222

Total for Apache Commons Projects 908 6042 427 7377 6258 45039 547 251 51844
Total for Randomly Selected Projects 1265 543 151 1959 10376 4417 175 99 14968

Total for all Projects 2173 6585 578 9336 16634 49456 722 350 66812

Some projects exhibit very little coverage, some have only
required methods, and others have a more even distribution.
By splitting covered methods into required and pseudo-tested
methods, the results show that 23 of the 27 projects contain
more methods that are required than pseudo-tested, with a
maximum of 5243 required methods in commons-math and
a minimum of zero in marine. Overall, pseudo-tested methods
were present in 20 of 27 projects, with the smaller randomly
selected projects tending to have no pseudo-tested methods.

The maximum number of pseudo-tested methods for the
Apache Commons projects was 390 in commons-math, while
in the randomly selected projects the maximum was 36, which
PSEUDOSWEEP found in solr-cmd-utils. The median value for
pseudo-tested methods across all projects was three, whereas
the median number of required methods was 22; overall,
projects tended to have fewer pseudo-tested methods than
required methods. All projects contained at least one covered
method; therefore, PSEUDOSWEEP did not find any projects
with both zero required and zero pseudo-tested methods.

There were some interesting distributions of method cov-
erage in the randomly chosen projects. For example, f3270
contained 204 methods of which only two were covered, with
one required and one pseudo-tested. The low coverage of this
project showed that even with seven test cases covering the
two methods, the test suite required only one of the methods
to pass. The lib-logger project also had low coverage, with

13.8% ((2+3)/36) coverage split into two required and three
pseudo-tested methods achieved with only three test cases.

Other project examples include wcomponents-compiler and
jena.serializer, both of which contained less than 10 meth-
ods in total, all of which were classified as required. Also,
ext4logback had fewer than 10 methods but contained four
non-covered methods and three required methods. No project
with fewer than 10 methods had any pseudo-tested methods.

2) Frequency of pseudo-tested statements: To our knowl-
edge, the frequency of pseudo-testedness at the statement level
has yet to be studied. Prior work evaluates SDL as a mutant
reduction technique, with limited study of its use beyond this
purpose [7], [36]. Understanding the frequency of pseudo-
tested statements in different types of methods will enhance
our understanding of their importance to developers. Table II
shows that the projects contained 66812 statements in total,
of which their tests covered only 50178 (49456+722). The
set of Apache Commons projects accounts for the majority
of statements studied with a total of 51844 statements; the
randomly selected projects contributed 14968 statements.

Pseudo-testedness made up a significantly smaller percent-
age of statements than it does of methods. Pseudo-tested meth-
ods comprised 6.1% (578/9336) of the total methods, whereas
pseudo-tested statements comprise 1.08% (722/66812) of to-
tal statements. For the Apache Commons projects, pseudo-
tested statements contributed to 1.05% (547/51844) and for

asw
4j

authlete-jo
se

beanunit

ch
ardet4j

co
mmons-c

li

co
mmons-c

odec

co
mmons-c

sv

co
mmons-m

ath

data-co
njuror

f3270
jargse

r

jso
n-ca

nonica
liza

tio
n

ka
fka

-co
mmon-lib

lib-lo
gger

paylo
ad-off-l

oading

se
quence

patte
rn

so
lr-c

md-utils

wildfly-
sw

arm
-sp

i

xm
l-re

gion-analyz
er

Subject Name

0.0

0.2

0.4

0.6

0.8

1.0
M

ut
at

io
n

S
co

re
Required
Pseudo-tested

Fig. 1. Mutation scores for pseudo-tested and required methods.

randomly selected projects they made up 1.17% (175/14968).
The project set also contained zero pseudo-tested statements
for ten projects, revealing that pseudo-testedness at the state-
ment level does not exist in all projects. Yet, across all projects,
the median of pseudo-tested statements was two.

PSEUDOSWEEP found 350 PiR statements, ranging from
zero in 14 projects to 125 in commons-codec, a large, well-
tested project. The median was also zero, indicating they are
uncommon in most projects. However, in the projects where
they are present, PiR statements — that would be overlooked
by XMT — are 48% (350/722) of pseudo-tested statements.

Conclusion for RQ1. Pseudo-tested elements (P) make up
6.1% (578/9336) of methods and 1.08% (722/66812) of
statements. Pseudo-tested statements within required meth-
ods (PiR) are 48% (350/722) of pseudo-tested statements.

C. RQ2:Do pseudo-tested elements have low mutation scores?

Figure 1 furnishes the traditional mutation scores for all
projects that had both required (R) and pseudo-tested (P)
methods. Moreover, Figure 2 gives the traditional mutation
scores for those projects with both required (R) and pseudo-
tested statements in required methods (PiR). Finally, for each
classification of methods and statements, Table III furnishes
the number of elements, the total number of mutants, the
number of mutants killed by the tests, and the overall mutation
score, inclusively ranging between 0.0 and 1.0, as calculated
by PIT. In the following analysis of these three data sources,
we highlight both the overall and project-specific trends.

1) Method Mutation Scores: Figure 1 shows that the muta-
tion scores for required and pseudo-tested methods follow the
trend identified by prior work [2]: those that are pseudo-tested
obtain lower mutation scores than those that are required.
Table III reveals that the overall mutation score for required
methods is 0.82 but only 0.40 for pseudo-tested methods.

asw
4j

beanunit

commons-c
odec

commons-c
sv

commons-m
ath

paylo
ad-off-lo

ading

pmpersis
tence

sm
artb

ill-c
lient

solr-c
md-utils

Subject Name

0.0

0.2

0.4

0.6

0.8

1.0

M
ut

at
io

n
S

co
re

Required
PiR

Fig. 2. Mutation scores for PiR and required statements.

TABLE III
For required (R), pseudo-tested (P), and not-covered (N) methods and state-
ments and pseudo-tested in required statements (PiR), the number of program
elements (# Elements), number of traditional mutants (# Mutants), number of
mutants detected by the test suite (# Killed), and the overall mutation score
(Score = # Killed / # Mutants) as calculated by the PIT mutation testing tool.

Elements # Elements # Mutants # Killed Score

Methods
Required 6585 45878 37466 0.82
Pseudo-tested 578 2124 839 0.40
Not covered 2173 7115 219 0.03

Statements
Required 49456 114164 90973 0.80
Pseudo-tested 722 818 406 0.50
PiR 350 322 184 0.57
Not covered 16634 20071 1971 0.10

Figure 1 also shows that, for all projects except commons-csv,
the mutation scores for the required methods are higher than
those of the pseudo-tested methods. We attribute the disparate
result for the single Apache Commons project to the fact that
it had only one pseudo-tested method with a single statement
and a single, killed PIT mutant, ultimately enabling its test
suite to obtain a 100% traditional mutation score.

2) Statement Mutation Scores: PSEUDOSWEEP found 14
projects that did not contain any pseudo-tested statements in
required methods. Since traditional mutation testing cannot
mutate non-existent pseudo-tested statements, Figure 2 does
not present traditional mutation scores for them. With that
said, Table III shows that the overall mutation score of 0.57
for PiR statements is lower than that of required statements at
0.80, similar to the trend detected at the method level. Figure 2
reveals that for two of the four Apache Commons projects
(i.e., commons-codec and commons-math) the mutation score
for required statements is higher than for the PiR statements.
Note that for commons-csv the mutation score for PiR is
higher than the mutation score for the required ones since
it contains only one mutant in a PiR statement that was

killed. For commons-cli, we found that the PiR statements did
not contain any mutants. For the randomly selected projects,
the mutation scores for required statements were higher than
those for the PiR statements. For asw4j and pmpersistence,
PIT generated only a single, killed mutant in PiR statements,
causing the mutation scores for PiR to be 1.0 for both projects
and therefore higher than the score for required statements.

Conclusion for RQ2. Pseudo-tested methods (P) obtain a
significantly lower mutation score of 0.40 than that of the
required methods (R) scoring 0.82. Pseudo-tested statements
in required methods (PiR) obtain a mutation score of 0.57
compared to the required statements’ mutation score of 0.80.

D. RQ3: Does PIT’s default operator set highlight deficient
testing with respect to pseudo-tested statements?

Section V-C’s answer to RQ2 pointed out that PIT gener-
ated very few mutants for the elements that PSEUDOSWEEP
classified as pseudo-tested. As shown in Table III, this lower
“mutants-per-element” count for pseudo-tested elements was
evident at both the method and statement levels. At the
method level, required methods contained 6.97 (45878/6585)
mutants per method, compared to those that were pseudo-
tested, which had an average of 3.67 (2124/578) mutants
per method. Required statements also had a higher count of
2.31 (114164/49456) mutants per statement as opposed to
PiR statements with 0.92 (322/350) mutants per statement.
Importantly, if PIT does not generate a sufficient number of
mutants for pseudo-tested elements, then traditional mutation
testing will not accurately characterise their well-testedness.

For all of the statement types across all of the projects, Ta-
ble IV shows that the ones with the fewest number of mutants
generated for them were: 588 break statements containing 4
mutants between them, 153 continue statements containing
0 mutants, and 1997 throw statements containing only 82
mutants between them. This result suggests that there are
several types of Java statements for which it is not sufficient
to measure test adequacy through mutation testing with PIT.

This table also reveals that there are several types of Java
statements, such as do and lambda return, for which there are
no pseudo-tested statements in required methods (∅). In this
case, PIT could not generate any mutants for these statement
types (↑) and, therefore, the mutation score was undefined (⊥).
Even when there were PiR statements for certain statement
types, like break and continue, PIT did not generate any
mutants and thus the mutation score was also undefined (⊥).
When PIT did generate mutants for PiR statements, it only
yielded 0.92 (322/350) mutants per statement, which is less
than the 2.31 (114164/49456) mutants per all statements.
Finally, the mutation score for a specific type of PiR statement
was always less than the corresponding score for all statements
of the same type. For instance, the mutation score for while
statements was 0.65 for all program statements and only 0.33
for those that are PiR, suggesting that pseudo-tested statements
in required methods are less well tested than the others.

Conclusion for RQ3. When using the default operator set
from the Gregor engine, PIT generated only 0.92 (322/350)
mutants per statement for PiR statements, while generating
2.31 (114164/49456) mutants per statement for required
statements. Moreover, statement types such as break, con-
tinue, and throw also yield few PIT-generated mutants.
Ultimately, the traditional mutation scores for all statements
are higher than for those that are PiR, suggesting that PIT’s
default mutation operator set does not effectively highlight
deficient testing for pseudo-tested program statements.

E. RQ4: What are the causes of pseudo-tested statements?

We manually studied pseudo-tested statements to discover
their root causes and how developers can handle them. In the
remainder of this discussion, we present the results of the
manual analysis, furnishing the specific cause of pseudo-tested
statements and the number of times that the cause was evident.

No targeting assertion (70): A test case covers statements
in this category, but no dedicated test assertion is responsible
for checking the pseudo-tested statement. This was the most
common category we found, containing 70 statements.

One example was a void method call in solr-cmd-utils to
a silent, error-handling method. The output of the method
was silently logging exceptions of a specific type. The test
suite did not check these logged exceptions; therefore, the
void method call statement is pseudo-tested. Any calls to
pseudo-tested methods will likely be pseudo-tested. Thus,
this pseudo-tested statement presents little information to the
developer. In commons-codec, we identified multiple state-
ments without assertions checking them. Another example
was the language.Caverphone2.encode method, containing 82
lines of code (LOC), which encodes an input string into
a “CaverPhone 2.0” value. This required method contained
63 statements, of which 23 were pseudo-tested. This en-
coding process used the java.lang.String.replace(t, r) and
java.lang.String.replaceAll(r, r) method calls to replace spe-
cific characters and regular expression patterns within the input
string. PIT’s default operator set does not mutate these non-
void method calls, meaning that across all 82 LOC, PIT seeded
only three mutants, of which the test suite killed two. This
example shows that where a method relies on the returned
values of non-void method calls, it is easy to miss assertions,
as neither code coverage nor PIT’s default set would highlight
these issues to a developer. The documentation for PIT lists a
“Non-Void Method Call” mutator that can be used but is not in
the default set. The documentation also notes that this mutator
is unstable and may create equivalent mutants. Importantly,
statement deletion consistently produces compilable mutants
and does not provide equivalent mutants in this context.

Developers could address these issues by adding assertions
to evaluate the consequences of the pseudo-tested statements.

Partial assertion (7): We found partial test assertions where
an assertion for the statement was present, but it only checked
part of program’s output. For example, PSEUDOSWEEP iden-
tified pseudo-tested statements related to partially checked
string variables. Some statements involved method calls that

TABLE IV
For each type of statement, the number of statements for each type (# Statements), the number of traditional mutants generated by PIT (# Mutants), the number
of mutants detected by the project’s test suite (# Mutants Killed), and the mutation score (Score = # Mutants Killed / # Mutants), for both all statements in a
program (All) and only the pseudo-tested statements in the required methods (PiR). In this table, the “∅” symbol means that there were no PiR statements of
the specific type, “↑” means that PIT could not generate or kill any mutants since the value for “# Statements” was “∅”, and “⊥” indicates that the mutation
score was undefined either because “# Mutants” and “# Mutants Killed” were “↑”’ or because “# Mutants” was zero. Using these symbols distinguishes
between an undefined mutation score when (i) there are no PiR statements of a specific type (“∅”) and thus both “# Mutants” and “# Mutants Killed” are
“↑” and (ii) there are a non-zero number of PiR statements for which PIT could not generate any mutants, making the mutation score’s denominator zero.

All PiR

Statement Type # Statements # Mutants # Mutants killed Score # Statements # Mutants # Mutants Killed Score

break 588 4 1 0.25 9 0 0 ⊥
continue 153 0 0 ⊥ 2 0 0 ⊥
do 44 1241 720 0.58 ∅ ↑ ↑ ⊥
expression 22936 17155 11373 0.66 184 98 63 0.64
for 2968 25528 20748 0.81 13 52 33 0.63
for each 731 1750 846 0.48 ∅ ↑ ↑ ⊥
if 16640 58479 37631 0.64 43 91 42 0.46
inner class 39 19 7 0.37 ∅ ↑ ↑ ⊥
inner class return 70 60 52 0.87 ∅ ↑ ↑ ⊥
lambda 31 69 33 0.48 ∅ ↑ ↑ ⊥
lambda return 29 100 61 0.61 ∅ ↑ ↑ ⊥
loop condition 3435 6496 5363 0.83 ∅ ↑ ↑ ⊥
return 9683 12549 9070 0.72 60 53 36 0.68
switch 102 3170 2209 0.70 1 2 0 0
throw 1997 82 6 0.07 16 0 0 ⊥
try 456 1494 539 0.36 ∅ ↑ ↑ ⊥
variable declaration 6466 1743 1383 0.79 17 5 3 0.60
while 444 5114 3308 0.65 5 21 7 0.33

returned sections of strings. When tests only partially check
these strings using a “contains” assertion, some statements
related to the string are not required for the test suite to
pass. PIT’s default operator set does not mutate this code
and would not necessarily reveal the partial assertion issue.
We also found this example when the test suite checked only
the exception type and no further details, thus showing weak
exception handling within the test suites. In commons-csv,
PSEUDOSWEEP identified a hashcode method whose tests
check that it produces both equal and unequal hashcodes.
The pseudo-tested statement in hashcode applied the same
operation to all input, and, therefore, one could categorise it as
a partial assertion or a redundant statement. However, we can
not ascertain this without further knowledge of the project.

No targeting test (9): We found nine pseudo-tested state-
ments caused by the lack of a test aimed to cover the statement.
Other tests executed these statements, but the test suite did
not include a test specifically designed for the statement. We
identified six pseudo-tested if statements, caused by no test
executing the if condition to “true”. This left code within the
if statement body uncovered. While this coverage deficiency
could be identified by JaCoCo [35], only addressing coverage
may not in turn address the pseudo-testedness. The other two
pseudo-tested statements are unchecked throw statements that
did not contain tests that checked for them. We could have
also classified these two statements as ambiguous exceptions,
but since there was no test aimed at them in the first place, we
concluded that this is the primary category for the statements.

Unintended exception handling (6): These tests used mul-
tiple assertions to check different behaviours within a single
test, including an expected exception. If any of these assertions
trigger the expected exception (even if unintentionally), the

JUnit expected exception attribute catches it and the test
continues to pass, thus making the statement pseudo-tested.
In asw4j, we found two examples of tests that used assertions
to consecutively call the same method with different inputs.
The tests also contained a JUnit expected exception annotation
attribute meant for the last assertion in the tests, which
provided the method with an invalid input. Yet, this annotation
caught any exception of the same type thrown by the other
assertions. This causes the test to pass when the assertions
failed unexpectedly, making the statement pseudo-tested.

The categories of no targeting assertion, partial assertion,
no targeting tests, and unintended exception handling surface
actionable insights that a developer gains from studying these
pseudo-tested statements found by PSEUDOSWEEP. For ex-
ample, adding a test for an unchecked behaviour or adding
assertions to check more program state are both intuitive
outcomes of identifying pseudo-tested statements. They are
also concerns that XMT would not raise, meaning that easy-
to-address issues will be left for traditional mutation testing to
identify at additional expense or, in the cases where traditional
mutation testing does not have an appropriate operator for the
statement, the developer may overlook the concern altogether.

Conclusion for RQ4. Pseudo-tested statements within re-
quired methods can highlight testing issues that XMT, tra-
ditional mutation testing, and code coverage do not detect.

VI. RELATED WORK

DeMillo et al. introduced “program mutation” in 1978, from
which all Mutation Testing literature has followed [18].

Mutant Reduction Techniques: Reducing the number of
mutants produced and executed to “do-fewer” is an active

research area [37], [38]. For instance, Ammann et al. cre-
ated a theoretical framework for mutant set minimisation,
producing sets considerably smaller than other best-practice
approaches [39]. However, Gopinath et al. showed that mutant
reduction strategies performed either worse or similar to
random sampling, suggesting that these methods need further
justification. Gopinath et al. also proposed super-mutants that
group mutants for execution and only further dividing the
group if it is detected [40]. While our approach is similar
to this one in that it generates mutants at the level of both
methods and statements, we focus on identifying pseudo-tested
elements and they aimed to efficiently create the mutant kill
matrix. Finally, Petrović et al. revealed how Google reduces
the number of mutants shown to developers by focusing on
those that are the most productive and would best motivate test
improvements [8], [9], [36]. Similarly, using PSEUDOSWEEP
to detect pseudo-tested methods and statements can surface
insights that enable developers to enhance their test suites.

Deletion Mutation Operators: Untch investigated the
SDL operator by itself and found that, compared to other
reduction strategies, it best predicted the traditional mutation
score [6]. Deng et al. studied the SDL operator further, adding
it to muJava [21] and empirically evaluating the traditional
mutation scores achieved by statement-deletion-adequate test
suites (i.e., when the test suite killed all SDL mutants). Dela-
maro et al. expanded the set of deletion operators to include
variable, constant, and operator deletion. Delamaro et al. also
evaluated the SDL operator and one-op mutation for the C
programming language [12]. Durelli et al. evaluated whether
equivalent mutants generated by deletion mutation operators
were easier to identify than those produced by traditional
mutation operators [41]. In the context of education, Balfroid
et al. studied XMT as an alternative to regular mutation testing,
ultimately finding the traditional method was slightly more
effective even though similar numbers of students classified
both mutation testing approaches as useful [42].

Higher-order Mutation: Higher-order mutants (HOMS)
are compositions of first-order mutants aimed to create a
single, harder-to-kill mutant [43]. However, without techniques
for improving efficiency, the search for meaningful HOMS
is often computationally expensive [44]. Although PSEU-
DOSWEEP uses a metamutant to instrument the program under
test, our approach differs from a HOM-based one since it does
not involve running multiple mutants simultaneously but rather
applying them sequentially based on prior test executions.

State Coverage: State coverage identifies unchecked out-
puts by identifying all outputs available to the test in memory
at the time of checks [45]. Yet, initial implementations proved
70 times slower than the standard JUnit test runner, limiting
its practicality [46]. Further work proposed some generalised
state coverage algorithms that offer limited feedback [47].

Direct and Indirect Coverage: Indirect coverage high-
lights program code not directly covered by any test case [48].
Huo and Clause classify code in the program under test as
“indirectly covered” if it is not in a method immediately called
by the test suite. Instead of focusing on program code that

is indirectly tested, our approach automatically detects both
methods and statements that are pseudo-tested since, as an
example, private methods cannot be called directly by a test.

Checked Coverage: Checked coverage (CC) detects state-
ments influencing the oracle with dynamic backward slices
from test assertions. Notably, Schuler and Zeller found it more
sensitive than mutation testing [49]. Hossain et al. defined the
“coverage gap” to show developers where to focus and devel-
oped a static analysis that provides testers with advice [32].
Ultimately, our approach assesses oracle strength by removing
covered elements, whereas CC identifies those contributing to
the test outcomes on a dynamic backward slice.

VII. CONCLUSIONS AND FUTURE WORK

An extreme mutation testing (XMT) tool individually
deletes method bodies in covered program code and observes
whether the test suite detects their absence [1]. XMT labels as
“pseudo-tested” any method that it removes without influenc-
ing test outcomes and calls a method “required” if its deletion
causes a change in test status. Focusing on a finer granularity
than XMT, this paper presents the first empirical study of
pseudo-testedness in program statements. Using 27 open-
source Java projects, the experiments use the PSEUDOSWEEP
tool to perform statement deletion, revealing that XMT would
overlook 48% of the pseudo-tested statements since they
appear in required methods. Pseudo-tested statements were
also locations of lower mutation scores, suggesting that such
statements are points of test suite weakness. The results also
show that PIT’s default set of mutation operators generated sig-
nificantly fewer mutants for certain statement types, meaning
that neither traditional nor extreme mutation testing will likely
highlight issues within these statements. Finally, a manual
analysis of 119 pseudo-tested statements across 30 methods
surfaced testing concerns that code coverage, extreme mutation
testing, and traditional mutation testing did not fully identify.

Given the promise of this paper’s results, it is important
to further study the full impact of pseudo-testedness at the
statement level, thus motivating both tool improvements and
new experiments. After enhancing PSEUDOSWEEP to filter un-
productive program elements and better handle test flakiness,
we plan to run experiments with additional projects to replicate
this paper’s experiments, measure the approach’s efficiency,
and perform studies to discern how PSEUDOSWEEP helps soft-
ware developers. Combining this paper’s contributions with
those arising from future work will position PSEUDOSWEEP
as a compelling way to detect the pseudo-tested statements
neglected by extreme mutation testing, supporting the iden-
tification of testing inadequacies that developers can address
before committing resources to traditional mutation testing.

ACKNOWLEDGMENTS

We thank Firhard Roslan for the mined list of GitHub
repositories for the Maven projects. Megan Maton is funded by
the EPSRC Doctoral Training Partnership with the University
of Sheffield, grant EP/W524360/1. Phil McMinn is supported,
in part, by the EPSRC grant “Test FLARE” (EP/X024539/1).

REFERENCES

[1] R. Niedermayr, E. Jürgen, and S. Wagner. Will my tests tell me if I break
this code? In Proceedings of the International Workshop on Continuous
Software Evolution and Delivery, 2016.

[2] O. L. Vera-Pérez, B. Danglot, M. Monperrus, and B. Baudry. A
comprehensive study of pseudo-tested methods. Empirical Software
Engineering, 24(3), 2019.

[3] O. L. Vera-Pérez, M. Monperrus, and B. Baudry. Descartes: A PITest
engine to detect pseudo-tested methods. In Proceedings of the Interna-
tional Conference on Automated Software Engineering, 2018.

[4] O. L. Vera-Pérez, B. Danglot, M. Monperrus, and B. Baudry. Sugges-
tions on test suite improvements with automatic infection and propaga-
tion analysis. In arXiv:1909.04770, 2019.

[5] R.A. DeMillo and Offutt J. Constraint-based automatic test data
generation. IEEE Transactions on Software Engineering, 17(9), 1991.

[6] R.H. Untch. On reduced neighborhood mutation analysis using a single
mutagenic operator. In Proceedings of the Annual Southeast Regional
Conference, 2009.

[7] L. Deng, J. Offutt, and N Li. Empirical evaluation of the statement dele-
tion mutation operator. In Proceedings of the International Conference
on Software Testing, Verification and Validation, 2013.

[8] G. Petrovic and M. Ivankovic. State of mutation testing at Google. In
Proceedings of the International Conference on Software Engineering:
Software Engineering in Practice, 2018.

[9] G. Petrovic, M. Ivankovic, G. Fraser, and R. Just. Practical mutation
testing at scale: A view from Google. IEEE Transactions on Software
Engineering, 48(10), 2022.

[10] H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Ventresque.
PIT: A practical mutation testing tool for Java. In Proceedings of the
International Symposium on Software Testing and Analysis, 2016.

[11] R. Just. The Major mutation framework: Efficient and scalable mutation
analysis for Java. In Proceedings of International Symposium on
Software Testing and Analysis, 2014.

[12] M. E. Delamaro, L. Deng, V. H. S. Durelli, N. Li, and J. Offutt.
Experimental evaluation of SDL and one-op mutation for C. In Pro-
ceedings of International Conference on Software Testing, Verification
and Validation, 2014.

[13] Maven central repository: https://repo.maven.apache.org/maven2.
[14] R. Just, G. M. Kapfhammer, and F. Schweiggert. Using non-redundant

mutation operators and test suite prioritization to achieve efficient
and scalable mutation analysis. In Proceedings of the International
Symposium on Software Reliability Engineering, 2012.

[15] R. Just, G. M. Kapfhammer, and F. Schweiggert. Major: An efficient and
extensible tool for mutation analysis in a Java compiler. In Proceedings
of the International Conference on Automated Software Engineering,
2011.

[16] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser.
Are mutants a valid substitute for real faults in software testing? In
Proceedings of the International Symposium on Foundations of Software
Engineering, 2014.

[17] J.H. Andrews, L.C. Briand, and Y. Labiche. Is mutation an appropriate
tool for testing experiments? In Proceedings of the International
Conference on Software Engineering, 2005.

[18] R.A. DeMillo, R.J. Lipton, and F.G. Sayward. Hints on test data
selection: Help for the practicing programmer. Computer, 11(4), 1978.

[19] Y. Jia and M. Harman. An analysis and survey of the development of
mutation testing. IEEE Transactions on Software Engineering, 37(5),
2011.

[20] M. E. Delamaro, J. Offutt, and P. Ammann. Designing deletion mutation
operators. In Proceedings of International Conference on Software
Testing, Verification and Validation, 2014.

[21] Y-S. Ma and J. Offutt. Description of muJava’s method-level muta-
tion operators. Technical report, Electronics and Telecommunications
Research Institute, Korea, 2005, updated 2016.

[22] M. Betka and S. Wagner. Towards practical application of mutation
testing in industry — Traditional versus extreme mutation testing.
Journal of Software: Evolution and Process, 34(11), 2022.

[23] M. Maton, G. M. Kapfhammer, and P. McMinn. PseudoSweep: A
pseudo-tested code identifier. In Proceedings of the International
Conference on Software Maintenance and Evolution, Tool Track, 2024.

[24] Replication package: https://github.com/PseudoTested/icsme-2024-repli
cation-package.

[25] R.H. Untch, A.J. Offutt, and M.J. Harrold. Mutation analysis using
mutant schemata. In Proceedings of International Symposium on
Software Testing and Analysis, 1993.

[26] R. Just, G. M. Kapfhammer, and F. Schweiggert. Using conditional
mutation to increase the efficiency of mutation analysis. In Proceedings
of the International Workshop on Automation of Software Test, 2011.

[27] O. Parry, M. Hilton, G. M. Kapfhammer, and P. McMinn. A survey of
flaky tests. ACM Transactions on Software Engineering and Methodol-
ogy, 31(1), 2022.

[28] N. Smith, D. van Bruggen, and F. Tomassetti. JavaParser: Visited.
LeanPub, 2023.

[29] M. Gruber, M. F. Roslan, O. Parry, F. Scharnböck, P. McMinn, and
G. Fraser. Do automatic test generation tools generate flaky tests? In
Proceedings of the International Conference on Software Engineering,
2024.

[30] Y-S. Ma, J. Offutt, and Y-R. Kwon. muJava: An automated class
mutation system. Software Testing, Verification and Reliability, 15(2),
2005.

[31] Y-S. Ma, J. Offutt, and Y-R. Kwon. muJava: A mutation system for Java.
In Proceedings of the International Conference on Software Engineering,
2006.

[32] S. Hossain, M. B. Dwyer, S. Elbaum, and A. Nguyen-Tuong. Mea-
suring and mitigating gaps in structural testing. In Proceedings of the
International Conference on Software Engineering, 2023.

[33] R. Gopinath, I. Ahmed, M-A. Alipour, C. Jensen, and A. Groce.
Mutation reduction strategies considered harmful. IEEE Transactions
on Reliability, 66(3), 2017.

[34] A. Shi, J. Bell, and D. Marinov. Mitigating the effects of flaky tests
on mutation testing. In Proceedings of the International Symposium on
Software Testing and Analysis, 2019.

[35] JaCoCo: Java code coverage library, 2014. https://www.jacoco.org/jacoco/.
[36] G. Petrovic, M. Ivankovic, G. Fraser, and R. Just. Please fix this mutant:

How do developers resolve mutants surfaced during code review? In
Proceedings of the International Conference on Software Engineering,
2023.

[37] A. J. Offutt and R. H. Untch. Mutation Testing for the New Century,
chapter Mutation 2000: Uniting the Orthogonal. Springer, 2001.

[38] A. V Pizzoleto, F. C Ferrari, J. Offutt, L. Fernandes, and M. Ribeiro.
A systematic literature review of techniques and metrics to reduce the
cost of mutation testing. Journal of Systems and Software, 157, 2019.

[39] P. Ammann, M. E. Delamaro, and J. Offutt. Establishing theoretical
minimal sets of mutants. In Proceedings of International Conference on
Software Testing, Verification and Validation, 2014.

[40] R. Gopinath, B. Mathis, and A. Zeller. If you can’t kill a supermutant,
you have a problem. In International Workshop on Mutation Testing,
2018.

[41] V. H. S. Durelli, N. M. De Souza, and M. E. Delamaro. Are deletion
mutants easier to identify manually? In Proceedings of International
Workshop on Mutation Testing, 2017.

[42] M. Balfroid, P. Luycx, B. Vanderose, and X. Devroey. An empirical
evaluation of regular and extreme mutation testing for teaching software
testing. In Proceedings of International Workshop on Software Testing
Education, 2023.

[43] Y. Jia and M. Harman. Higher Order Mutation Testing. Information
and Software Technology, 51(10), 2009.

[44] C.-P. Wong, J. Meinicke, L. Chen, J. P. Diniz, C. Kästner, and
E. Figueiredo. Efficiently finding higher-order mutants. In Proceedings
of the Joint Meeting on European Software Engineering Conference and
International Symposium on the Foundations of Software Engineering,
2020.

[45] K. Koster and D. Kao. State coverage: A structural test adequacy
criterion for behavior checking. In Proceedings of the Joint Meeting of
the European Software Engineering Conference and the International
Symposium on the Foundations of Software Engineering, 2007.

[46] K. Koster. A state coverage tool for JUnit. In Proceedings of the
Companion of the International Conference on Software Engineering,
2008.

[47] D. Vanoverberghe, J. de Halleux, N. Tillmann, and F. Piessens. State
coverage: Software validation metrics beyond code coverage. In Pro-
ceedings of the International Conference on Current Trends in Theory
and Practice of Computer Science, 2012.

[48] C. Huo and J. Clause. Interpreting coverage information using direct
and indirect coverage. In Proceedings of the International Conference
on Software Testing, Verification and Validation, 2016.

[49] D. Schuler and A. Zeller. Checked coverage: An indicator for oracle
quality. Software Testing, Verification and Reliability, 23(7), 2013.

