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Abstract—Background: Developers often rely on statement
coverage to assess test suite quality. However, statement coverage
alone may only lead to 10% fault detection, necessitating more
rigorous approaches. While mutation testing is effective, its exe-
cution and human analysis costs remain high. Identifying covered
statements that are not checked by oracles (e.g., assertions)
offers a cost-effective alternative; however, the lack of empirical
evidence for selecting the appropriate Oracle Gap Calculation
Approach (OGCA) prevents developers from making informed
choices. Aims: This knowledge-seeking study compares oracle gap
characteristics determined by different OGCAs to assist devel-
opers in choosing the most valuable approach for their use cases.
Method: Using mixed-method empirical analysis, we conduct an
in-depth evaluation of the oracle gaps produced using three
OGCAs: Checked Coverage using a Dynamic Slicer (CCpgs),
Checked Coverage using an Observational Slicer (CCos), and
Pseudo-Tested Statement Identification (PTSI). Across 30 Java
classes from six open-source projects, we report on a quantitative
evaluation of gap prominence, distribution, fault detection corre-
lation and execution times, as well as results from a qualitative
manual inspection of the statement types found in the oracle gaps.
Results: The qualitative analysis showed data-loading statements,
iteration statements and output updates to be most prominent
in the oracle gaps. PTSI identified the oracle gaps with the
lowest median mutation score (0.32), highlighting areas requiring
more fault detection improvement compared to CCps (0.76) and
CCos (0.50). PTSI also had the shortest median execution time
(19.9 seconds), far quicker than both CCpgs (273.2 seconds) and
CCos (5957.1 seconds). Conclusions: PTSI quickly reveals the
priority testing areas for improved fault detection, making it an
effective OGCA for developers to identify where tests fall short.

I. INTRODUCTION

Due to insufficient time allocation and limited recognition
of testing effort [1], developers understandably struggle with
motivation to test their code. Meeting metric targets, such as
code coverage, gives developers a clear goal. But with limited
time for testing, focusing on maximizing only the scores of
these metrics may result in other test weaknesses emerging.

Code coverage (i.e., statement or branch coverage) is the
most common metric for assessing test quality, with its ad-
vantages demonstrated in studies from Google and IBM [2],
[3]. Yet despite widespread use, code coverage has many well-
known limitations. For instance, writing a test suite to achieve
statement coverage can result in only 10% fault detection [4].

The current state-of-the-art technique for assessing fault
detection is mutation testing [5], [6], [7]. Mutation testing
places synthetic faults (i.e., mutants) into program code to
identify whether the test suite detects them, thus helping
developers establish missing test oracles. Despite being an
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effective simulation of real fault detection, mutation testing,
in its standard interpretation, remains impractical due to the
considerable computational expense and the manual effort
required to identify equivalent mutants [8], [9], [10], [11].
Recent evidence has found that identifying oracle gaps,
that is, code that is executed by tests (i.e., covered) but
does not cause a test case to pass or fail, may be a cost-
effective way to find where tests fall short. Intuitively, code
in these gaps is not well tested by the test suite [12], [13].
Existing oracle gap calculation approaches (OGCAs), such as
host checked coverage, extreme mutation testing (XMT) and
identifying pseudo-tested statements, highlight covered code
that is unchecked by an oracle (e.g., a test assertion) to provide
developers with clear testing direction without the expense of
equivalent mutant analysis and execution times [12], [13], [14].
Whilst each OGCA has been given varying attention, there
exists no empirical evidence to guide developers in choosing
the appropriate one [12], [13], [14], [15], [16], [17]. As such,
developers remain uninformed regarding suitable oracle gap
sizes; their calculation costs; the statement types within the
gaps, and the mutation scores of the statements in the oracle
gaps. For developers, answering these questions is critical.
An empty gap offers no testing direction, while an overly
large oracle gap is not cost-effective for developers to address.
Furthermore, if an OGCA places irrelevant statements in the
oracle gap, then the developer may waste time strengthening
tests for unimportant code. Conversely, low mutation scores
across oracle gap statements highlight a test suite with low
fault detection, necessitating targeted test improvements.
This paper performs a knowledge-seeking study to analyze
and compare the statements within the oracle gaps identi-
fied by three OGCAs: checked coverage using a dynamic
slicer (CCpg); checked coverage using an observational slicer
(CCps) and pseudo-tested statement identification (PTSI)
for 30 Java classes across six open-source projects, including
libraries and SDKs, ranging in program size and test coverage.
Supporting this study, we present a generalized oracle gap
definition enabling comparison between them. This paper’s
empirical results will help developers pick the right OGCA
to make the most effective use of their limited testing time.
We quantitatively evaluate the different oracle gaps for
their prominence, statement distribution, correlation with fault
detection, and execution times. A manual inspection with ne-
gotiated agreement revealed data loading statements, iteration
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Motivating Example
[ Inconsequent to assertion pass/fail [ Contributes to assertion pass/fail
D O R — Oracle-based adequacy criteria
OO0 public String createXmlTag(String name,

1

ood String content) {
;000 if (name == null || name.trim().isEmpty()) {
OO0 System.err.println("/* ... */");
sOO0d return "";
OO0 }
OO0 string s = "<" + name + ">";
sdOO s += content;
cdOO s += "</" + name + ">";
OO0 return s;
ngoagd
12
13 QTest
14 public void test_checkEndTag() {
15 String tagName = "message";
16 String tagContent = "Hello, world!";
1 String result = createXmlTag(tagName, tagContent);
18 assertTrue (result.contains ("</message>"));

19 }

Listing 1. Motivating example using prepared Java method createXmlTag
and its accompanying JUnit test. Column headers: D: Dynamic Slice; O:
Observational Slice; R: Required (not pseudo-tested). The highlighted text is
“covered” under statement coverage. Statements that are covered but do not
contribute to an assertion passing or failing are in the oracle gap.

statements, and output updates to be the most prominent state-
ment types and patterns. Generally, the differences between the
statements in the oracle gaps indicate that the OGCAs cannot
be used interchangeably. PTSI highlighted code locations with
the lowest median mutation scores of 0.32, compared to
CCps (0.76) and CCpgs (0.50), therefore revealing priority
testing areas for improving fault detection. PTSI also had the
shortest median execution time of 19.9 seconds, compared to
273.2 seconds (CCpg) and 5957.1 seconds (CCpg), suggest-
ing it could be a good initial test suite analysis approach to
help developers to rapidly identify weak testing areas.

The contributions of this paper are, therefore, as follows:

1) A generalized definition of the oracle gap.

2) A quantitative evaluation of the oracle gap prominence,
distribution, fault detection rate, and execution times
using checked coverage with dynamic and observational
slicing, and pseudo-tested statement identification.

3) A qualitative manual inspection of code patterns identi-
fied as ineffectual by each technique.

A complete replication package is available at [18], containing
all tools, execution data, manual inspection decisions and
project links to enable replication and extension of this work.

II. ORACLE GAPS

The motivating example in Listing 1 illustrates how using
different techniques to evaluate an oracle, in this case, the
assertion on Line 18, can yield conflicting oracle gaps. The
example test suite contains a single test case to check the Java
method createXmlTag, where the highlighted gray lines
represent the statements that the test suite covers. The columns
of boxes represent the statements on a given line that cause
the assertion on Line 18 to pass or fail, as decided by the three
techniques. For example, column D represents a dynamic slice
from the assertion, for which the slice contains the statements
on Lines 3, 7, 8, 9 and 10 (marked by @ ). Conversely, column

O, which shows an observational slice, contains Lines 1, 2, 7,
9, 10 and 11. Interestingly, the statements on Lines 3 and 8 are
not on the observational slice (marked by O ) despite being
covered (i.e., highlighted gray). As such, these statements
are in the oracle gap between statement coverage and the
observational slice. To remove the statements from the gap, a
developer should write further tests evaluating the tag content
and invalid inputs. The dynamic slice, however, contains all
of the covered statements and, therefore, has an empty oracle
gap, implying no further tests are needed. Column R shows
required statements, which are covered statements that, when
individually deleted or set to a different value, will cause
a test to fail (marked by @ ). In this example, required
statements create the largest oracle gap (i.e, statements on
lines 3, 7 and 8). The discrepancy between the oracle gaps
leaves developers in the dark, unsure which code is tested and
which oracle gaps are actually useful to improve their testing.

A. Oracle Gaps

Test oracles (i.e., the JUnit assertion on Line 18 in Listing 1)
determine whether a test case passes or fails and are vital
in assessing expected program behavior [19], [20]. Since the
number of assertions demonstrates a strong positive correlation
with test suite effectiveness (i.e., fault finding), identifying
missing oracles is core to test suite improvement [21].

Recent studies have taken a promising approach to identify-
ing missing assertions for covered code. Each of these Oracle
Gap Calculation Approaches (OGCAs) identifies covered code
that does not fulfill a secondary oracle assessment criterion
as shown in Listing 1. Hossain et al. defined the coverage
gap as elements executed by tests but unobserved by a test
oracle [12]. In extreme mutation testing (XMT), pseudo-tested
methods are executed by the test suite, yet the method body
is removable without causing test failures [14], [15]. Maton
et al. extended this to the statement level, finding pseudo-
tested statements in non-pseudo-tested methods [13]. For this
study, we generalize this as an oracle gap as defined below.

Definition II.1 (Generalized Oracle Gap). All covered state-
ments that do not directly cause a test oracle to pass or fail.

This definition divides covered code into two categories:

Definition II.2 (Effectual Statement). A covered statement
that directly causes a test oracle to pass or fail.

Definition I1.3 (Ineffectual Statement). A covered statement
that does not directly cause a test oracle to pass or fail.

This section explains how checked coverage using dynamic
slicing (CCpg), checked coverage using observational slicing
(CCpgs), and pseudo-tested statement identification (PTSI) fit
under these classifications. We refer to their respective oracle
gaps using gap(CCpg), gap(CCos) and gap(PTSI).

B. Checked Coverage using Dynamic Slicing (CCpg)

Checked coverage (CC) uses a dynamic slice (DS) from an
assertion to identify the statements that cause an oracle to pass
or fail [22], [23]. A dynamic slice comprises the transitive
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Fig. 1. Identifying Oracle Gaps with GapGrep: Oracle gaps are calculated by combining the outputs of Slicer4] (CCpg), and PORBs (CCpg) and statement
coverage. PseudoSweep (PTSI) calculates its oracle gap (i.e., the pseudo-tested statements) internally; however, we visualize it separately for clarity.

dynamic data and control dependencies contributing to the
slicing criterion (e.g., a variable value for a given input) [24].

Definition II.4 (Checked Coverage using Dynamic Slicing).
Checked Coverage using Dynamic Slicing requires each slice-
able statement to be on at least one dynamic backward slice
from an explicit test suite check.

The OGCA using Checked Coverage using Dynamic Slicing
is labeled CCpg. The gap(CCpg) is the set of covered
statements that do not appear on a dynamic slice, and, as such,
are ineffectually covered. In Listing 1, gap(CCpg) is empty,
as all covered statements also appear on the dynamic slice.

C. Checked Coverage using Observational Slicing (CCpg)

Observational slicing is a language-independent technique
that constructs a program slice through repeated line deletion
and program behavior observation [25]. If the line can be
deleted and the original behavior of the slicing criterion (i.e.,
the state of a variable at a given location) remains, the deletion
is accepted. If the deletion causes a change in program behav-
ior under the given slicing criterion, the deletion is rejected.
Like dynamic slicing, observational slicing creates a slice that
can be used to calculate checked coverage and determine
whether program code influences test oracle outcomes.

Definition IL.5 (Checked Coverage using Observational Slic-
ing). Checked Coverage using Observational Slicing requires
each program line [ € P to be on at least one observational
backward slice from an explicit test suite check.

It is worth noting that an observational slice is calculated in
terms of lines; however, the oracle gap refers to the statements
on those lines. In terms of the gap(CCpg), the effectual
statements are those covered and appearing on lines on a slice
(i.e., not deleted), whereas the ineffectual statements are those
that are covered yet do not appear on a slice (i.e., deleted). The
gap(CCpg) comprises the originally covered, but collectively
deletable lines (i.e, the set of statements on ineffectual lines).

D. Pseudo-tested statement identification (PTSI)

Where the test suite executes a production code element
(e.g., statement or method), yet the same element can be
deleted from the project without altering the test outcomes, this
code is said to be “pseudo-tested” [13], [14]. When identifying
pseudo-tested statements, code can be categorized as follows:

Definition I1.6 (Pseudo-tested Statement). Code that the tests
execute, but is removable without changing test outcomes.

Definition II.7 (Required Statement). Code that the test suite
executes but is not removable without changing test outcomes.

The set of pseudo-tested statements form gap(PTSI). PTSI
differs from CCpg, as CCpg uses collective line deletions to
form a slice, whereas PTSI uses only individual deletions or
default values to evaluate single statements.

III. EVALUATION

This section states and contextualizes the five research
questions that this paper answers about oracle gap calculation.

As there is no existing comparable evidence, we must first
quantify the oracle gaps calculated by each OGCA, enabling
us to compare and contrast them in subsequent research
questions. This includes the size of the gaps, and the similarity
between them. A low similarity in gap content would suggest
the techniques are not interchangeable, each having a unique
use case. This directly leads to research questions 1 and 2:

RQ1: Prominence — What proportion of a subject’s production
code lies within the oracle gap calculated by each approach?

RQ2: Distribution — How do the contents (i.e., program state-
ments) of each approach’s oracle gap differ and/or overlap?

After understanding the breadth of the oracle gaps, we can
look at the individual statements that are declared ineffectual
by each OGCA. Analyzing the code statements and patterns
identified by each OGCA is critical to evaluating their potential
use cases. Furthermore, if developers use oracle gaps as an
intermediate step towards, or instead of, mutation testing, a
gap must effectively highlight priority areas needing further
testing. To reflect this, we ask research questions 3 and 4:



RQ3: Categorization — Which program statement types appear
within the oracle gaps calculated by each approach?

RQ4: Fault Detection — How well does each oracle gap
calculation approach highlight areas of low mutation score?

Finally, as developers typically focus on a single class when
writing unit tests, it is essential to be pragmatic regarding each
approach’s performance. As such, we ask research question 5:

RQ5: Performance — How do the execution times of different
oracle gap calculation approaches compare?

Answering these questions will enhance understanding of
the oracle gaps and how different approaches may be used.

A. Tooling

We use statement coverage and an oracle-based adequacy
criterion to form an OGCA to identify an oracle gap. We limit
the study to statements within methods to ensure comparability
across tools, and, therefore, use PseudoSweep’s statement
coverage as the coverage tool to calculate oracle gaps [26].
To implement CCpg, we used the Slicer4] dynamic slicer for
Java, replicating other studies of checked coverage, to enable
the analysis of projects using Java 8 or 9, and overcome
some limitations of JavaSlicer [27], [28], [29]. For PTSI,
we used PseudoSweep to identify stand-alone pseudo-tested
statements within the study projects [26]. Finally, to evaluate
CCpgs, we use the PORBS (Parallelized ORBS) Observational
Slicer implementation [30]. We use PIT, a state-of-the-art Java
mutation testing tool [31] to evaluate whether the oracle gaps
reveal areas of low fault detection. We implemented a tool
called GapGrep, as overviewed in Figure 1, to run each OGCA
and report and analyze its output in a unified manner. We use
GapGrep, available in the replication package [18], to calculate
and analyze the oracle gaps and report the results.

B. Projects

Our targeted projects consisted of open-source Java projects
compatible with our chosen OGCA tools. As such, each
project must use Java 8 or 9 (Slicer4] and PseudoSweep),
JUnit 4 or 5, and be a single-module Maven project (Pseu-
doSweep). Projects should also avoid threading, which can
lead to inaccurate results in PseudoSweep [26]. All selected
projects must also compile and have a passing test suite.

To ensure this study evaluated a range of projects, we sys-
tematically selected projects from the Maven Central Repos-
itory, using the OSSF Criticality Score to gauge the most
influential and important projects [32], [33]. For diversity in
the project set, we picked the top five Java projects for each
Criticality Score parameter (both positively and negatively
weighted), and the highest GitHub Stars count. The parameters
of the criticality score, using the original “Pike” configuration,
include GitHub repository statistics such as how recently it has
been maintained and its dependents count. This initial process
yielded 70 projects, from the 12 categories containing five
projects each. However, initial experiments surfaced OGCA
execution time as a significant constraint, with experiment
runs for some individual Java classes taking multiple days. To

ensure a feasible project set, we randomly selected six projects
from our initial list. From each project, we identified five class
and unit test class pairs, resulting in 30 classes under test. We
include a complete list of the classes studied in Table 1. Of
the projects selected, facebook-java-business-sdk obtained the
highest criticality score, inutils4j had the highest contributor
involvement, euclid was the least updated, eo-yaml had the
highest user activity in the last 90 days, and finally java-string-
similarity and tabula-java had the highest star counts.

C. Method

We used GapGrep in these steps to answer the five RQs.

1) Execute Tools: As shown in Figure 1, to calculate the
oracle gaps for each of the three OGCAs, GapGrep takes
PseudoSweep’s statement coverage calculation (i.e., statement
coverage in method bodies only) and identifies which covered
statements do not fulfill each approach’s oracle-assessment
criterion. To ensure a feasible analysis, we focused solely
on unit test classes directly targeting the corresponding class-
under-test. For instance, our analysis of the Skip class only
considered tests within the SkipTest class. Consequently, the
coverage data for each class, as presented in Table I, only
reflects statement coverage achieved by its dedicated test class.

With GapGrep, we run Slicerd] (CCpg), PORBS (CCpgs),
PseudoSweep (PTSI), and PIT (mutation testing) on each class
and test-class pair. For CCpg, we collate the dynamic slices
obtained from each JUnit 4 or 5 assertion into a single list. For
CCog, we collect the list of deleted lines from the class under
test, and for PTSI, we collect the statement location, statement
coverage, and the pseudo-tested statements list. Finally, after
executing the test suite for each class, we take the list of
mutations made to the program during mutation testing, their
locations, and their status (i.e., uncovered, killed, or survived).

2) Calculate Oracle Gaps: Using GapGrep, we collate the
slices and PseudoSweep’s data to identify the ineffectually
tested statements that make up the oracle gaps, as shown
in Figure 1. For CCpg and CCpg, we take the respective
program slices and identify the covered statements, according
to PseudoSweep’s statement coverage calculator, that are not
on the slice. This forms each OGCA’s oracle gap. Pseu-
doSweep uses internal coverage calculation and thus does need
additional tooling to calculate the PTSI oracle gap [26].

3) Quantify Overlaps and Differences in Oracle Gaps: We
compare the sets of program statements in each of the three
oracle gaps with Jaccard Similarity, a metric that can compute
the similarity between two sets that may not be equal in size.
Jaccard Similarity is calculated by counting the number of
source code statements that occur in both sets and dividing
by the count of items appearing in either set. Therefore, the
Jaccard Similarity J for two sets of program statements, A and
B, is calculated by J(A, B) = |AN B|/|AU B|. We use the
Jaccard Similarity score to compare the set pairs of varying
sizes to quantify the overlap between the different oracle gaps.

4) Characterize Gap by Statement Types: To contextualize
the contents of each oracle gap, we performed a manual study
of the statements within the union of the oracle gaps for six



classes (one from each project under test). For this, we used
a negotiated agreement approach as used in other software
engineering studies [34], [35], [36]. Each author individually
assessed the purpose of the statements within each oracle gap
before coming together to discuss the assessments and arrive
at a unanimous decision on the purpose of each statement. We
then used the agreed-upon assessments to characterize the code
patterns in each gap and highlight how each OCGA differs.
5) Calculate Mutation Scores for Each Oracle Gap: Using
the PIT mutation tool for Java, with its STRONGER group
of 13 mutation operators, we calculate the mutation score
for each class, given its unit tests [37]. We then identify all
the mutants, which line they occurred on, and whether they
were killed, surviving, or uncovered. Using this, we could
then identify the mutants placed in oracle gap statements and
calculate the mutation score for each oracle gap for each class.
6) Compare Oracle Gap Calculation Performance: We
calculate the execution time for each tool (including PIT) by
timing how long it takes to execute on the class-under-test.
For PseudoSweep, this is an overestimation as the run script
includes the calculation of pseudo-tested statements, whereas
for Slicer4] and PORBS, GapGrep calculates this afterwards.

D. Threats to Validity

External: This study leverages 30 open-source Java classes
that fulfilled a range of criteria. Balancing feasibility for
research purposes and practical use cases is a challenging task,
and as such, computational expense necessarily restricted the
number of projects and classes. Although this set of classes
limited the study’s breadth, it facilitated a deeper evaluation
of the oracle gaps. Since our study was also restricted to Java
projects, its results may not be generalized to other project
sets using different languages, library versions, or threaded
projects. Furthermore, our evaluation considered three oracle
gap calculation approaches. Other strategies and implemen-
tations may yield varying results, and further studies should
explore this. For mutation testing, we used the PIT mutation
testing tool for Java and its STRONGER mutant set to generate
and evaluate traditional mutants [37]. Yet, a different mutation
testing tool or mutant set would have yielded different results.

Internal: We use Slicer4], PORBS, and PseudoSweep to
instantiate each OGCA. However, these implementations may
not be error-free. Despite our best efforts, our implementation
of checked coverage using Slicer4] and PORBS may contain
defects that could impact the results. Both Slicer4] (CCpg)
and PseudoSweep (PTSI) manipulate the project-under-test
by instrumenting source code (PseudoSweep) or moving test
classes (Slicer4]), which could lead to an inaccurate oracle
gap calculation if the original project behavior is not retained.
Mistakes are also possible in GapGrep’s amalgamation of tool
outputs for evaluation. We, therefore, include tool code and
additional scripts in the replication package for transparency,
enabling researchers to replicate and extend this work [18].

Construct: The assumption that the mutation score is an
indicator of test quality underpins RQ4 and the conclusions
drawn from the results. This assumption is a notable threat to

the construct validity of this study since there is conflicting
evidence on this relationship. However, our choice is sub-
stantiated by studies demonstrating the correlation between
mutation score and fault detection effectiveness [9], [10], [38].
Individual researchers’ expertise may have biased the discus-
sion within our manual study using negotiated agreement.
We mitigated this by having each author reach individual
conclusions before the discussion, where each author could
justify their reasoning before coming to a collective decision.

IV. RESULTS
A. RQI: Prominence

Table I shows the distribution of covered, on-slice (CCpg
and CCpg), and required lines (PTSI) within the project
classes. For each technique, we identify the oracle gaps in each
class. We first present the statement coverage data calculated
using PseudoSweep for the class, given the paired unit test
class. We use this to identify the effectual statements (i.e.,
those that are covered and appear on the slice), and the
ineffectual statements (i.e., those that are covered but do not
appear on the slice). The sum of effectual and ineffectual state-
ments for each technique will always equal the total covered
statements. The slices are calculated using lines rather than
statements, but are paired with the appropriate statement to
calculate oracle gaps. PTSI calculates required (i.e., effectual)
statements differently, as a required statement must be covered
by definition. Therefore, there is no separate slice counterpart
for this technique. The following analysis of Table I presents
the overall trends, followed by a deeper exploration of the
prominence of oracle gaps highlighted in individual classes.

1) Prominence of Dynamic Slice Oracle Gap (gap(CCpg)):
The gap(CCpg) contains the statements covered under state-
ment coverage, yet do not appear on a dynamic slice from
a test assertion. Overall, 1201 statements appeared on at
least one of Slicer4)’s dynamic slices from the test class
that corresponded with the class-under-test. Of the covered
statements, 1021 also appeared on the dynamic slice and were
therefore effectually covered. This left 459 (31%) statements
that were ineffectually covered and therefore in gap(CCpg).

Looking at the CCpg data in Table I, we can see that On
Slice does not necessarily mean covered. The statement cover-
age used only evaluates statements within methods; therefore,
it will not account for elements on the slice beyond this. We
can see that the number of effectual elements is greater for
most classes than the number of ineffectual elements. For
the 10 classes where the ineffectual count is greater than the
effectual count there does not appear to be a correlation with
the relative slice size or coverage. Notably, at least one such
class appeared in each project-under-test. We also observe
that MyReflectionUtils, HashedListAdaptor, and Event are the
only classes that contain O effectual statements under CCpg.
Furthermore, despite 8 classes achieving 100% coverage, only
2 of them have no oracle gap (i.e., 0 ineffectual statements).

2) Prominence of Observational Slice Oracle Gap
(gap(CCpg)): The observational slices are generated by
observing the test classes’ pass/fail behavior using PORBS.



TABLE I
THE COUNTS OF ELEMENTS FULFILLING EACH CRITERIA

Statement Coverage CCpgs CCos PTSI
project | Class #Stmts  #Cov  %Cov  On Slice  #Eff #Ineff On Slice #Eff #Ineff #Eff #Ineff
euclid / Real3Range 36 33 92 39 28 5 104 32 1 32 1
euclid / Int2Range 54 30 56 26 22 8 78 25 5 30 0
euclid / IntSquareMatrix 72 65 90 48 40 25 146 62 3 62 3
euclid / Line2 151 118 78 107 98 20 260 106 12 116 2
euclid | Transform2 213 90 42 50 38 52 173 58 32 86 4
inutils4j / MyNumberUtils 5 4 80 4 4 0 17 4 0 3 1
inutils4j / MyMapUtils 4 4 100 4 4 0 50 4 0 4 0
inutils4j / MyReflectionUtils 29 18 62 0 0 18 63 14 4 18 0
inutils4j / MyArrUtils 65 20 31 9 9 11 92 20 0 19 1
inutils4j / MyStringUtils 1025 476 46 388 384 92 1041 131 345 436 40
eo-yaml / JsonYamlDump 10 10 100 13 10 0 34 10 0 10 0
eo-yaml | ReadYamlStream 14 14 100 17 11 3 65 13 1 14 0
eo-yaml | Welllndented 26 21 81 3 2 19 57 19 2 21 0
eo-yaml | Skip 17 17 100 4 3 14 90 15 2 17 0
eo-yaml | ReadYamlMapping 68 56 82 74 51 5 265 53 3 56 0
facebook-java-business-sdk | HashedListAdaptor 34 26 76 1 0 26 70 24 2 26 0
facebook-java-business-sdk | BatchProcessor 12 12 100 3 3 9 116 10 2 12 0
facebook-java-business-sdk | CAPIGatewayEndpoint 38 17 45 17 15 2 92 12 5 17 0
facebook-java-business-sdk | ServerSideApiUtil 103 65 63 38 38 27 176 48 17 64 1
facebook-java-business-sdk | Event 313 85 27 153 85 0 1694 33 52 85 0
tabula-java | Cell 20 6 30 7 6 0 37 4 2 4 2
tabula-java | Line 28 19 68 12 10 9 61 18 1 19 0
tabula-java | Table 27 15 56 17 11 4 74 9 6 8 7
tabula-java | Rectangle 55 39 71 36 29 10 141 38 1 34 5
tabula-java | TextElement 116 80 69 37 34 46 173 56 24 80 0
Jjava-string-similarity / LongestCommonSubsequence 22 20 91 10 9 11 45 12 8 20 0
Jjava-string-similarity / SorensenDice 17 17 100 9 9 8 49 12 5 17 0
Jjava-string-similarity / OptimalStringAlignment 26 26 100 14 11 15 50 16 10 26 0
Jjava-string-similarity / RatcliffObershelp 34 34 100 21 21 13 68 30 4 34 0
Jjava-string-similarity / NGram 48 43 90 40 36 7 52 9 34 43 0
Total 2682 1480 N/A 1201 1021 459 5433 897 583 1413 67

Suppose a test is unsuccessful (i.e., does not compile,
fails, or it causes the throw of an unhandled exception)
after deleting a line. In that case, the line is an observed
dependency contributing to the test case passing. Overall, the
gap(CCopg) contained the most statements, at 583 ineffectual
statements, accounting for 39% of covered statements.
However, this trend does not represent the project set, as the
345 ineffectual statements in MyStringUtils bias this overall
value. For all but five Java classes, the gap(CCpg) was
smaller than or equal to that of gap(CCpg). Interestingly, the
observational slice accounts for significantly more lines than
are covered, highlighting an inefficiency when calculating
oracle gaps. For example, in Real3Range, 33 statements are
covered, yet 104 lines are on the slice. We can attribute
this to how observational slicing constructs its slice, using
observed dependencies, including any Java lines required
for compilation and contributing to successful runs. In this
sense, the observational slice is a more complete program
slice; however, in this use case, not all of the slice provides
relevant information when calculating a slice for an OGCA.

3) Prominence of Required Statements Oracle Gap
(gap(PTSI)): The key difference between PTSI’s required
(i.e., effectual) statements and slices lies in how they contribute
to test outcomes. Slices are statements that collectively cause
a test to pass or fail, whereas, for required statements, we
evaluate the individual impact on the test outcome. Across all

statements, only 67 were pseudo-tested (i.e., ineffectual), far
fewer than for the slicing-based techniques and just 5% of the
covered statements. For all classes, there were more effectual
statements than ineffectual, with only 11 classes having any
ineffectual statements. MyStringUtils had 40 ineffectual state-
ments, but its source code size is larger than the other classes.

Conclusion for RQ1. All OGCAs identified oracle gaps, but
their sizes varied from 67-583 statements. The gap(CCpg)
often contained more sliced statements than covered state-
ments, exposing computational inefficiency. The gap(PTSI)
revealed a remarkably smaller gap of 67 statements, sug-
gesting it is a less sensitive oracle-adequacy criterion.

B. RQ2: Distribution

To evaluate the distribution of the statements within the
oracle gap, we calculate and present the Jaccard Similarity
scores for each pair of oracle gaps. A Jaccard Similarity score
of 1 indicates the elements of two sets are identical, whereas
a score of 0 would indicate no common elements. In terms of
oracle gap content between the different pairs of techniques,
there are varying degrees of overlap. The gap(CCpg) and
gap(CCpg) pair exhibit a similarity score of 0.21, which is a
higher similarity than for any of the other pairs. Furthermore,
the gap(CCopgs) and gap(PTSI) similarity is low at just 0.09,
with gap(CCpgs) and gap(PTSI) being even lower at 0.06.
The low similarity between gap(PTSI) and those of the other



TABLE II
STATEMENTS ARE CATEGORIZED THROUGH NEGOTIATED AGREEMENT.
BOLD VALUES REPRESENT THE TECHNIQUE WITH THE HIGHEST COUNT.

Category Total CCps CCps PTSI

Special Case Check 7 7 2 0

State Check 6 6 0 0

Checks Output Check 4 0 4 4

Trivial Output Check 4 0 4 1

Input Check 1 1 0 0

Output Update 15 15 12 12

Update State Update 6 6 0o 0
Initialization State Initialization 7 6 2

Output Initialization 5 5 0 0

Output Return 9 6 0 4

Ret Default Return 3 1 0 2

eturn Private Method Return 1 1 0 0

Trivial Output Return 1 1 1 0

Data Loading 322 68 310 8

Iteration 25 24 2 1

Defensive Programming 14 9 11 6

Other String Processing 12 0 12 11

Mathematical Computation 5 5 0 0

Throw Exception 3 3 2 2

Scheduling 2 2 2 0

Parent Call 1 0 1 1

OGCA:s is likely a reflection of the difference in statement set
sizes. For instance, as noted in RQ1’s response, gap(PTSI)
contained 67 statements, compared to 583 in gap(CCps).

Conclusion for RQ2. The statement sets in the oracle gaps
identified by each tool are dissimilar. The gap(CCpg) and
gap(CCpg) pair are most similar (0.21), while CCpg and
PTSI are least similar (0.06). This is likely a reflection of
the statement set size difference between the oracle gaps.

C. RQ3: Categorization

Intuitively, the statements in the oracle gaps represent the
program source code that, according to each OGCA, was not
well tested. To better characterize the statements for which the
tests fall short, the three authors performed a manual study of
the purposes of the code in the oracle gaps, using negotiated
agreement to focus on 454 statements across 6 classes. We
present our categorization of the statements in Table II, along
with examples to describe the code patterns in the oracle gaps.
When possible, we preserve the original code and indentation,
adjusting and contracting it for readability as needed.

1) Checks (26): We defined check statements to include
code where a conditional is used to evaluate some condition
to change the path of the program execution. Such ineffectual
checks were identified across the oracle gap from each OGCA.

Special Cases were the most common checks to appear in
the oracle gaps. These include code structures such as edge-
case checks, complex-conditional checks, and equality checks.

State Checks included checking flags and markers to decide
on the path through the program. Welllndented, for example,

used these checks on ineffectual Lines 125 and 126 to find if
an incorrect state had been entered and throw an exception.

if (!"...".equals (previous....())
prevIndent) {
if (!":".contains (prevLineLastChar)) ({

&& lineIndent >

We identified 4 statements as output checks, where the
output was the method’s return value. Each instance occurred
in the MyStringUtils class, to iteratively perform string pro-
cessing (and therefore also included in Section IV-C5), such as
the following ineffectual while statement check on Line 1801.

while (text.contains("\b")) {
text = text.replace("\b", " ");
}

Trivial Output Checks included code where, given the set
of inputs, applying a given operation on them was redundant,
so an early check was performed to avoid doing so. In the
method “capitalize” in MyStringUtils, for example, if the first
character was already a capital, it was redundant to capitalize
it, so it returned the string without changes, as shown below:

if (Character.isUpperCase(c)) {
return s;
}
The check itself was the ineffectual statement in this example.

We found an instance of an Input Check in MyStringUtils
using a try statement that we could not classify under another
category. The code used the ineffectual try statement to attempt
to parse an input string as an integer, identified only by CCpg.

2) Update (21): We designated updates as statements that
reassigned existing variables, given a behavior in the program.
In particular, we identified State Updates and Output Updates.
State updates included class state or internal method state
statements, such as updating a counter variable or boolean
flags used to track state. All 6 were identified by CCpg as in
the oracle gap. One example in the OptimalStringAlignment
class tracked the cost while calculating a distance matrix.

cost = 1;
if (sl.charAt(i - 1) == s2.charAt(j - 1)) {
cost = 0;

}

Here, CCpgs deemed both the cost variable updates ineffectual.

Output updates included reassignments to the variable being
returned by the method. CCpg placed all 15 such statements
in the gap, but CCpg and PTSI also identified 12 of these.

3) Initialization (12): Initializations include ineffectual
variable declarations. State Initialization included variables
that were declared with the sole purpose of tracking state.
We found this to occur 7 times, with 6 being identified by
Slicer4], 2 by PORBS, and 1 by PseudoSweep. For instance,
in the Welllndented class, Line 93 initialized a boolean flag
to track “withinBlockScalar” throughout the method:

boolean withinBlockScalar = false;

The oracle gaps also contained 5 Output Initializations that
initialized the variable returned by the method. For example,
the “lowerTriangle” method in the IntSquareMatrix class con-
tained an ineffectual output initialization on Line 364, as the
triangle variable is returned later in the method.

IntArray triangle = new IntArray((n = (n + 1)) / 2);



4) Return (14): We used return as a category, but delved
further into the purpose of the return statement. This sample
had no void return statements, so all statements returned a
variable or value. We found one instance where the return
statement returned a Trivial Output that did not need further
operations from the method. Line 21 in the Rectangle class
shows where, as part of a comparator for ordering, an initial
check returns early when the two inputs are equal.

if (ol.equals(o2)) return 0;

We also found one instance of a return statement in a Private
Method. We labeled this as such because it was related to
why it was in the oracle gap. This example was in the
OptimalStringAlignment class on Line 120, within an internal
implementation of a minimum method as shown below:

private static int min(
final int a, final int b, final int c) {
return Math.min(a, Math.min(b, c));

}

The three Default Returns appeared when the program
behavior had not met any previous checks and therefore
reached a specified default return value. An example is Line
1981 in the “hasJapaneseCharacter” method of MyStringUtils,
where after iterating through each character in a string, if none
of the characters fulfill the check, the method returns false.

public static boolean hasJapaneseCharacter (String str) {
for (char c : str.toCharArray()) {
if (JAPANESE_BLOCKS.contains (UnicodeBlock.of (c))) {
return true;
}
}

return false;
}

The most prominent return type found in the oracle gap
was the Output Return, returning the result computed by the
method. There were 9 instances of this, identified between
gap(CCpg) with 6 and gap(PTSI) with 4. Below is an
example from Line 371 in the IntSquareMatrix class, where
the “lowerTriangle” method ineffectually returns said triangle.

return triangle;

5) Other (384): The Other category contains the code
descriptions that did not fall into clear groupings. We discuss
the categories in order of total statements. The largest category
in this group was the Data Loading category, containing 322
statements, with most being identified by the OGCA using
PORBS, as shown in Table II. These statements primarily
appeared in the MyStringUtils class, which loaded many
strings into map structures, such as Line 158:

escapeStrings.put ("&amp; ", new Character (' \u0026’));

The next most prominent category under Other was Iteration,
which included for loops, while loops, and other structures
primarily for iteration. Although this category does not provide
insight beyond the statement types, it was worth noting that
they were revealed mainly by the CCpg approach.
Interestingly, we found 14 Defensive Programming state-
ments in the oracle gaps, with some being revealed by each
OGCA. These statements evaluated and addressed inputs and

states to ensure that unexpected exceptions would not arise
later in the program. For example, the OptimalStringAlign-
ment class throws a NullPointerException if String s1 is null:

if (sl == null) {
throw new NullPointerException("...");

}

String Processing accounted for 12 statements, none of
which were identified by CCpg. These included the following
in the “removeAccents” method in the MyStringUtils class:

s = s.replace((char) O0xEl, "a’);

In this instance, the deletion-based techniques of CCpg and
PTSI seem to be tailored for detecting string processing
statements that may need further tests or assertions.
Mathematical Computation includes any statement used to
perform a mathematical operation given some values. We
found 5 instances of this in the IntSquareMatrix class, where
the whole class is directed at mathematical operations on
matrices. For example, the following three ineffectual lines
are used as part of a transpose matrix operation and were only
identified as being in the oracle gap calculated with Slicer4].

int t = flmat[i][]];
flmat [1] [j] = flmat[]j][1i];
flmat [j]1[1] = t;

The smallest three categories in Other were Throw Excep-
tion, Scheduling, and Parent Call. The three Throw Exception
statements were another example of cases where we could not
assign a deeper purpose than the statement type. This does not
include all ineffectual exception throws, just those that could
not be attributed to another purpose. We found two examples
of Scheduling statements that were only identified as being
in the oracle gap by CCpg and CCpg. The PseudoSweep-
based PTSI was likely unable to identify these due to its
difficulties with threaded code. Although this study aimed to
avoid threaded code, there may have been instances where
our pattern matching method did not reveal it. We found one
instance where a parent call was in the gap, highlighted by
CCops and PTSI. For this, the parent call was for a custom-
written equality check on Line 211 in IntSquareMatrix:

public boolean isEqualTo (IntSquareMatrix r) {
return super.isEqualTo((IntMatrix) r);

}
This class did not invoke Java’s built-in equality methods.

Conclusion for RQ3. The gaps created by the three OGCAs
had statements from 21 different sub-categories in 5 different
overarching categories. CCpg revealed the most ineffec-
tual checks, iterations and initializations, whereas CCpg
and PTSI highlighted ineffectual string manipulation, data-
loading and defensive programming. The divide between
dynamic slicing and the deletion-based approaches suggests
the code-under-test should influence OGCA selection.

D. RQA4: Fault Detection

Figure 2 presents the mutation scores for all of the state-
ments within each oracle gap for each class by OGCA. We
see the oracle gaps for each class as calculated using CCpg,
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Fig. 2. A boxplot of the mutation scores for the statements in each oracle
gap. Each box represents an interquartile range (IQR). The whiskers (i.e., the
lines) extend to the max. and min. values but exclude outliers (i.e., the dots).

which has the highest median of mutation scores, with a wide
range of scores from 0.20 to 1.00. This suggests that the
approach may be less effective at highlighting under-tested
areas where these faults may exist. In other words, this oracle
gap identifies statements with high mutation scores that are,
therefore, a lower priority for further testing. Ultimately, these
high scores suggest that addressing the oracle gap identified
by dynamic slicing may not help developers to reveal faults
in their code. In contrast, PTSI’s oracle gap of pseudo-tested
statements achieves the lowest mutation scores with a median
value of 0.32, indicating that it is the most effective of the three
approaches at drawing attention to potential fault detection
deficiencies. The mutation scores are generally low with little
variation, showing a consistency in PTSI’s pinpointing of tests
that fall short by exhibiting weak fault detection. The mutation
score of CCpg’s oracle gap sits between the score of other
two OGCA’s gaps, with the smallest inter-quartile range of
0.00, causing no visible box in Figure 2. This means there
is no variability in the middle 50% of the data; in this case,
the mutation scores were 0.50. Yet, it has the most significant
overall spread, with mutation scores at both 0.00 and 1.00.
Although less effective than PTSI at highlighting areas of low
fault detection, it is the most consistent of the OGCAs.

Conclusion for RQ4. The oracle gaps calculated by PTSI
contain the lowest mutation scores, suggesting it is the most
effective at revealing areas of fault detection deficiency.

E. RQ5: Performance

Figure 3 presents a box plot of each OGCA’s execution
times. As explained in Section III, the tools used by each
OGCA are: Slicer4d] for CCpg; PORBS for CCpg; and
PseudoSweep for PTSI. Due to a significant time difference,
Figure 3 uses a logarithmic scale. The Slicer4J execution times
span from 24.8 seconds to 16067.0 seconds (approx. 4.5hrs).
The box ranges from 99.3 seconds to 921.8 seconds (approx.
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Fig. 3. A boxplot with a logarithmic scale showing the differences in

execution times for the tools implementing CCpg, CCpg and PTSIL

15 min), with no overlap with quartiles from other tool
execution times. The Slicer4] execution times are generally
higher than those of PseudoSweep, but mostly lower than
PORBS. Slicer4] also shows more variability in execution time
with some high outliers. Overall, PseudoSweep has the lowest
execution times, ranging from 8.1 seconds to 121.7 seconds.
This is the smallest range of any OGCA, as well as the least
variability with an inter-quartile range of 30.2 seconds. We
also noted that PseudoSweep had similarly quick execution
times to PIT (i.e., the mutation testing tool used to answer
RQ4), even though PseudoSweep is still a prototype tool.
PORBS’ execution times are significantly higher than the
other OGCAs, ranging from 1297.0 seconds (approx. 21min)
to 371675.3 seconds (over 4 days) for a single Java class.
This results suggests that using PORBS on an entire project
becomes infeasible if it contains more than a few classes. The
inter-quartile range of 16272.2 seconds (approx. 4.5hrs) for
PORBS execution times also exposes its limited practicality.

Conclusion for RQS. PORBS (CCpg) was consistently
impractically slow by a large margin, while Slicer4J (CCpg)
had varying execution times. Overall, PseudoSweep (PTSI)
consistently had the fastest execution times per class.

F. Overall Conclusions

These results indicate that not all oracle gaps are equal,
with differences in their size; the statements they contain; the
relevance to fault detection; and the time to calculate, making
it important for developers to make an informed choice of
OGCA. Each covered statement is in the oracle gap because
it does not cause a test to pass or fail, leaving the statement
vulnerable to undetected incorrect behavior. This was echoed
by the oracle gap mutation scores, demonstrating that the
statements could contain many small syntactic changes (i.e.,
mutants) without causing any test failures, supporting the re-
sults of other recent studies [12], [13], [15]. PTSI’s apparently
more particular criterion for an ineffectual statement appears



to be valuable in finding areas of low mutation score, whilst
also benefiting from PseudoSweep’s quicker runtime. CCpg
and CCpg were less directed at areas of surviving mutants,
and executed in substantially longer time periods, potentially
wasting the already limited developer testing time. As such,
this comparison yields valuable insights for developers when
choosing an OGCA and the approaches’ future development.
The results in Section IV-E are limited by the maturities of
the tools involved. Continued optimization work may produce
different execution times in the future. Further study should
explore these oracle gaps with developers to understand how
useful they find them in practice and whether they would take
the time to add the relevant assertions. Developers could also
inform automated solutions for addressing the oracle gaps.

V. RELATED WORK

Oracle Gaps: The term oracle gap has been used by Jain
et al. to refer to the value difference between coverage scores
and mutation scores. While this provides a metric to evaluate a
test suite, the metric alone does not provide actionable items,
such as the priority statements necessitating improved testing
that we evaluate in this study [39]. Hossain et al. found a
statistically significant correlation between fault-detection ef-
fectiveness and host checked coverage gap size, demonstrating
the importance of addressing the gaps between techniques.
However, host checked coverage was fixed by the dynamic
slicer, with a changeable coverage criterion and thus unsuitable
for this study. Extreme mutation testing (XMT) has found
pseudo-tested methods in prominent open-source Java projects,
such as Apache Commons-Lang and Commons-Math [14].
These methods are areas of low mutation score, indicating fault
detection weakness in their test suites [15]. As our study was
not at the method level, XMT was not applicable to this study.
Maton et al. extended this search for pseudo-testedness to the
statement level, identifying methods that were “required” for
the test suite to pass and could still contain pseudo-tested
statements [13]. We employ their tool, PseudoSweep; however,
we do not limit this study to only the required methods [26].

Slicing Approaches: Lee et al. introduced Observation-
based approximate dependency modeling as a faster alternative
to ORBS, producing an approximate slice [40], [41]. Although
faster, the reduced accuracy of this approach is not appropriate
for calculating checked coverage values. Lee et al. created a
framework to reveal the causal dependence between program
elements. This technique may be helpful in future work to
infer the causes behind ineffectual elements [42]. Binkley
et al. investigated ‘“observational sensitivity to inadequate
testing” where they used ORBs to slice on variables that may
interest a maintainer [43]. We use PORBS to focus on the
overall outcome of the test suite rather than value changes for
individual variables or lines. DeMillo et al. introduced critical
slicing as a fault localization approach that also uses deletion
to create a program slice [44]. However, critical slicing is
unsuitable for this study as the individual statement deletion
checks and collective removal can produce incorrect slices.

Oracle-based Test Adequacy Techniques: Hossain and
Dwyer surveyed oracle-based test adequacy metrics, highlight-
ing the following as the prominent metrics in the area [45].
Beyond checked coverage, discussed in Section II-B, the two
metrics they identified were state coverage and observable
coverage. Koster and Kao developed state coverage to re-
veal whether unit tests evaluate program outputs and side-
effects [46]. Their initial implementations were 70x slower
than the standard JUnit test runner [47]. An extension on state
coverage provided a generalized algorithm but did not provide
enough feedback to help developers debug their code, as such,
not making it valuable for this study [48]. Whalen et al.
introduced observable MC/DC (OMC/DC) coverage to ensure
that the effects of faults would be revealed by oracles [49].
By adding a path condition to MC/DC, OMC/DC requires
stronger oracles in existing test cases rather than increasing
the number of test cases. However, OMC/DC is not an oracle
assessment technique, making it unsuitable for this study.

VI. CONCLUSIONS AND FUTURE WORK

Calculating an oracle gap enables developers to pinpoint
covered statements that do not cause an assertion to pass
or fail, revealing vulnerabilities to incorrect behavior, and
highlighting where testing is needed. Yet, with multiple OGCA
options, developers cannot make an informed selection. This
study quantitatively and qualitatively compared the oracle gaps
of CCpg, CCpg, and PTSI across 30 Java classes in six
projects, to assist developers in choosing a suitable OGCA.

Overall, each OGCA produced dissimilar oracle gaps in
both statement set size and content. The set sizes ranged from
67-583 ineffectual statements, with the low Jaccard similar-
ity scores (0.06-0.21) indicating that each OGCA identifies
largely distinct sets of ineffectual code. Each OGCA identified
different ineffectual statement types, with CCpg’s gaps fre-
quently involved iteration and update statements, while CC g
and PTSI concentrated on data loading and string processing.
Most notably, gap(PTSI) had the lowest mutation scores,
making these statements high priority for improved fault
detection. Furthermore, PseudoSweep for PTSI also emerged
as the fastest OGCA tool. As such, this study identified PTSI
as the most efficient and effective OGCA, enabling developers
to quickly highlight the most vulnerable statements in need of
additional tests and assertions, in the shortest execution time.

Given the promise of these results, we look to quantitatively
broaden this study to complete Java projects and projects
in other programming languages. Future work should also
evaluate these OGCAs for specific coding styles, such as de-
fensive programming, and gather developer insights to inform
automated solutions for addressing oracle gap statement sets.
Ultimately, the combination of this paper and the proposed
future work will yield a practically useful way for developers
to automatically identify how their test cases fall short.
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